Suppr超能文献

用抗叶酸剂靶向植物二氢叶酸还原酶及遗传抗性机制

Targeting plant DIHYDROFOLATE REDUCTASE with antifolates and mechanisms for genetic resistance.

作者信息

Corral Maxime G, Haywood Joel, Stehl Luca H, Stubbs Keith A, Murcha Monika W, Mylne Joshua S

机构信息

School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia.

The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia.

出版信息

Plant J. 2018 Jun 7. doi: 10.1111/tpj.13983.

Abstract

The folate biosynthetic pathway and its key enzyme dihydrofolate reductase (DHFR) is a popular target for drug development due to its essential role in the synthesis of DNA precursors and some amino acids. Despite its importance, little is known about plant DHFRs, which, like the enzymes from the malarial parasite Plasmodium, are bifunctional, possessing DHFR and thymidylate synthase (TS) domains. Here using genetic knockout lines we confirmed that either DHFR-TS1 or DHFR-TS2 (but not DHFR-TS3) was essential for seed development. Screening mutated Arabidopsis thaliana seeds for resistance to antimalarial DHFR-inhibitor drugs pyrimethamine and cycloguanil identified causal lesions in DHFR-TS1 and DHFR-TS2, respectively, near the predicted substrate-binding site. The different drug resistance profiles for the plants, enabled by the G137D mutation in DHFR-TS1 and the A71V mutation in DHFR-TS2, were consistent with biochemical studies using recombinant proteins and could be explained by structural models. These findings provide a great improvement in our understanding of plant DHFR-TS and suggest how plant-specific inhibitors might be developed, as DHFR is not currently targeted by commercial herbicides.

摘要

叶酸生物合成途径及其关键酶二氢叶酸还原酶(DHFR)是药物开发的热门靶点,因为它在DNA前体和一些氨基酸的合成中起着至关重要的作用。尽管其很重要,但人们对植物DHFR了解甚少,植物DHFR与疟原虫中的酶一样具有双功能,拥有DHFR和胸苷酸合成酶(TS)结构域。在这里,我们使用基因敲除系证实,DHFR-TS1或DHFR-TS2(而非DHFR-TS3)对种子发育至关重要。通过筛选突变的拟南芥种子对抗疟DHFR抑制剂药物乙胺嘧啶和环氯胍的抗性,分别在预测的底物结合位点附近的DHFR-TS1和DHFR-TS2中鉴定出了致病变异。由DHFR-TS1中的G137D突变和DHFR-TS2中的A71V突变导致的植物不同耐药谱,与使用重组蛋白的生化研究结果一致,并且可以通过结构模型来解释。这些发现极大地增进了我们对植物DHFR-TS的理解,并提出了开发植物特异性抑制剂的方法,因为目前商业除草剂并未将DHFR作为靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验