Department of Mechanical Engineering , Stanford University , Stanford , California 94305 , United States.
MESA Research Institute for Nanotechnology , University of Twente , P.O. Box 217, 7500 AE Enschede , Netherlands.
ACS Appl Mater Interfaces. 2018 Jul 5;10(26):22834-22840. doi: 10.1021/acsami.8b06002. Epub 2018 Jun 25.
Nickel (Ni) plating has garnered great commercial interest, as it provides excellent hardness, corrosion resistance, and electrical conductivity. Though Ni plating on conducting substrates is commonly employed via electrodeposition, plating on semiconductors and insulators often necessitates electroless approaches. Corresponding plating theory for deposition on planar substrates was developed as early as 1946, but for substrates with micro- and nanoscale features, very little is known of the relationships between plating conditions, Ni deposition quality, and substrate morphology. Herein, we describe the general theory and mechanisms of electroless Ni deposition on semiconducting silicon (Si) substrates, detailing plating bath failures and establishing relationships between critical plating bath parameters and the deposited Ni film quality. Through this theory, we develop two different plating recipes: galvanic displacement (GD) and autocatalytic deposition (ACD). Neither recipe requires pretreatment of the Si substrate, and both methods are capable of depositing uniform Ni films on planar Si substrates and convex Si pyramids. In comparison, ACD has better tunability than GD, and it provides a more conformal Ni coating on complex and high-aspect-ratio Si structures, such as inverse fractal Si pyramids and ultralong Si nanowires. Our methodology and theoretical analyses can be leveraged to develop electroless plating processes for other metals and metal alloys and to generally provide direction for the adaptation of electroless deposition to modern applications.
镍 (Ni) 电镀具有很大的商业价值,因为它具有出色的硬度、耐腐蚀性和导电性。虽然在导电基底上进行 Ni 电镀通常通过电镀来实现,但在半导体和绝缘体上进行电镀通常需要采用无电镀方法。早在 1946 年,就已经开发出了用于平面基底上沉积的相应电镀理论,但对于具有微纳尺度特征的基底,对于电镀条件、Ni 沉积质量和基底形态之间的关系,我们知之甚少。在此,我们描述了在半导体硅 (Si) 基底上电沉积 Ni 的通用理论和机制,详细说明了电镀浴失效情况,并建立了关键电镀浴参数与沉积 Ni 薄膜质量之间的关系。通过该理论,我们开发了两种不同的电镀配方:电置换 (GD) 和自催化沉积 (ACD)。这两种配方都不需要对 Si 基底进行预处理,并且这两种方法都能够在平面 Si 基底和凸形 Si 金字塔上沉积均匀的 Ni 薄膜。相比之下,ACD 比 GD 具有更好的可调节性,并且它能够在复杂和高纵横比的 Si 结构(如反向分形 Si 金字塔和超长 Si 纳米线)上提供更一致的 Ni 涂层。我们的方法和理论分析可以用于开发其他金属和金属合金的无电镀工艺,并为将无电镀沉积应用于现代应用提供方向。