Suppr超能文献

三维微接触印刷术在多孔细胞培养膜上实现化学和形貌的复合图案化。

3D Microcontact Printing for Combined Chemical and Topographical Patterning on Porous Cell Culture Membrane.

机构信息

Department of Nanobiosystem Technology, Institute of Micro- and Nanotechnologies MacroNano, Institute of Chemistry and Biotechnology , Ilmenau University of Technology , 98693 Ilmenau , Germany.

Institute of Biomaterials, Department of Materials Science and Engineering , University of Erlangen-Nuremberg , 91058 Erlangen , Germany.

出版信息

ACS Appl Mater Interfaces. 2018 Jul 5;10(26):22857-22865. doi: 10.1021/acsami.8b06585. Epub 2018 Jun 21.

Abstract

Micrometer-scale biochemical or topographical patterning is commonly used to guide the cell attachment and growth, but the ability to combine these patterns into an integrated surface with defined chemical and geometrical characteristics still remains a technical challenge. Here, we present a technical solution for simultaneous construction of 3D morphologies, in the form of channels, on porous membranes along with precise transfer of extracellular matrix proteins into the channels to create patterns with geometrically restricting features. By combining the advantages of microthermoforming and microcontact printing, this technique offers a unique patterning process that provides spatiotemporal control over morphological and chemical feature in a single step. By use of our 3D-microcontact printing (3DμCP), determined microstructures like channels with different depths and widths even with more complex patterns can be fabricated. Collagen, fibronectin, and laminin were successfully transferred inside the predesigned geometries, and the validity of the process was confirmed by antibody staining. Cells cultivated on 3DμCP patterned polycarbonate membrane have shown selective adhesion and growth. This technique offers a novel tool for creating freeform combinatorial patterning on the thermoformable surface.

摘要

微尺度生化或形貌图案通常被用于指导细胞的黏附与生长,但是将这些图案整合到具有特定化学和几何特征的集成表面上仍然是一个技术挑战。在这里,我们提出了一种用于在多孔膜上同时构建三维形貌(如通道)的技术解决方案,同时将细胞外基质蛋白精确地转移到通道中,以创建具有几何限制特征的图案。通过结合微热成型和微接触印刷的优势,该技术提供了一种独特的图案化工艺,可在单个步骤中对形态和化学特征进行时空控制。通过使用我们的 3D 微接触印刷(3DμCP),可以制造具有不同深度和宽度的通道等确定的微结构,甚至更复杂的图案也不在话下。胶原、纤连蛋白和层粘连蛋白被成功地转移到预定的几何结构内部,并且通过抗体染色验证了该过程的有效性。在 3DμCP 图案化聚碳酸酯膜上培养的细胞表现出选择性的黏附和生长。该技术为在可热成型表面上创建自由组合图案提供了一种新工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验