Suppr超能文献

通过经过功能验证的基于序列的计算预测模型对 BRCA1 和 BRCA2 错义变异进行全面注释。

Comprehensive annotation of BRCA1 and BRCA2 missense variants by functionally validated sequence-based computational prediction models.

机构信息

Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.

Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.

出版信息

Genet Med. 2019 Jan;21(1):71-80. doi: 10.1038/s41436-018-0018-4. Epub 2018 Jun 8.

Abstract

PURPOSE

To improve methods for predicting the impact of missense variants of uncertain significance (VUS) in BRCA1 and BRCA2 on protein function.

METHODS

Functional data for 248 BRCA1 and 207 BRCA2 variants from assays with established high sensitivity and specificity for damaging variants were used to recalibrate 40 in silico algorithms predicting the impact of variants on protein activity. Additional random forest (RF) and naïve voting method (NVM) metapredictors for both BRCA1 and BRCA2 were developed to increase predictive accuracy.

RESULTS

Optimized thresholds for in silico prediction models significantly improved the accuracy of predicted functional effects for BRCA1 and BRCA2 variants. In addition, new BRCA1-RF and BRCA2-RF metapredictors showed area under the curve (AUC) values of 0.92 (95% confidence interval [CI]: 0.88-0.96) and 0.90 (95% CI: 0.84-0.95), respectively. Similarly, the BRCA1-NVM and BRCA2-NVM models had AUCs of 0.93 and 0.90. The RF and NVM models were used to predict the pathogenicity of all possible missense variants in BRCA1 and BRCA2.

CONCLUSION

The recalibrated algorithms and new metapredictors significantly improved upon current models for predicting the impact of variants in cancer risk-associated domains of BRCA1 and BRCA2. Prediction of the functional impact of all possible variants in BRCA1 and BRCA2 provides important information about the clinical relevance of variants in these genes.

摘要

目的

改进预测不确定意义的错义变异体(VUS)对 BRCA1 和 BRCA2 蛋白功能影响的方法。

方法

使用具有高灵敏度和特异性的破坏性变异体检测方法的 248 个 BRCA1 和 207 个 BRCA2 变体的功能数据,重新校准 40 种用于预测变体对蛋白活性影响的计算算法。为了提高预测准确性,还开发了用于 BRCA1 和 BRCA2 的额外随机森林(RF)和朴素投票方法(NVM)元预测器。

结果

优化的计算预测模型阈值显著提高了 BRCA1 和 BRCA2 变体预测功能影响的准确性。此外,新的 BRCA1-RF 和 BRCA2-RF 元预测器的曲线下面积(AUC)值分别为 0.92(95%置信区间[CI]:0.88-0.96)和 0.90(95%CI:0.84-0.95)。同样,BRCA1-NVM 和 BRCA2-NVM 模型的 AUC 分别为 0.93 和 0.90。RF 和 NVM 模型用于预测 BRCA1 和 BRCA2 中所有可能错义变异体的致病性。

结论

重新校准的算法和新的元预测器显著改进了预测 BRCA1 和 BRCA2 中癌症风险相关结构域中变异体影响的现有模型。BRCA1 和 BRCA2 中所有可能变异体的功能影响预测为这些基因中变异体的临床相关性提供了重要信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da3f/6287763/4a2ffe256427/nihms-953431-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验