Suppr超能文献

嗅觉系统中动态网络的生成式生物物理建模

Generative Biophysical Modeling of Dynamical Networks in the Olfactory System.

作者信息

Li Guoshi, Cleland Thomas A

机构信息

Department of Psychology, Cornell University, Ithaca, NY, USA.

Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.

出版信息

Methods Mol Biol. 2018;1820:265-288. doi: 10.1007/978-1-4939-8609-5_20.

Abstract

Generative models are computational models designed to generate appropriate values for all of their embedded variables, thereby simulating the response properties of a complex system based on the coordinated interactions of a multitude of physical mechanisms. In systems neuroscience, generative models are generally biophysically based compartmental models of neurons and networks that are explicitly multiscale, being constrained by experimental data at multiple levels of organization from cellular membrane properties to large-scale network dynamics. As such, they are able to explain the origins of emergent properties in complex systems, and serve as tests of sufficiency and as quantitative instantiations of working hypotheses that may be too complex to simply intuit. Moreover, when adequately constrained, generative biophysical models are able to predict novel experimental outcomes, and consequently are powerful tools for experimental design. We here outline a general strategy for the iterative design and implementation of generative, multiscale biophysical models of neural systems. We illustrate this process using our ongoing, iteratively developing model of the mammalian olfactory bulb. Because the olfactory bulb exhibits diverse and interesting properties at multiple scales of organization, it is an attractive system in which to illustrate the value of generative modeling across scales.

摘要

生成模型是一种计算模型,旨在为其所有嵌入变量生成合适的值,从而基于众多物理机制的协同相互作用来模拟复杂系统的响应特性。在系统神经科学中,生成模型通常是基于生物物理学的神经元和网络的 compartmental 模型,这些模型明确地是多尺度的,受到从细胞膜特性到大规模网络动力学等多个组织层次的实验数据的约束。因此,它们能够解释复杂系统中涌现特性的起源,并作为充分性测试以及可能过于复杂而难以简单直观理解的工作假设的定量实例。此外,当受到充分约束时,生成性生物物理模型能够预测新的实验结果,因此是实验设计的强大工具。我们在此概述了一种用于迭代设计和实现神经系统生成性、多尺度生物物理模型的一般策略。我们使用我们正在进行的、不断迭代发展的哺乳动物嗅球模型来说明这个过程。由于嗅球在多个组织尺度上表现出多样且有趣的特性,它是一个有吸引力的系统,可用于说明跨尺度生成建模的价值。

相似文献

1
Generative Biophysical Modeling of Dynamical Networks in the Olfactory System.
Methods Mol Biol. 2018;1820:265-288. doi: 10.1007/978-1-4939-8609-5_20.
2
Dynamical mechanisms of odor processing in olfactory bulb mitral cells.
J Neurophysiol. 2006 Aug;96(2):555-68. doi: 10.1152/jn.00264.2006. Epub 2006 May 17.
3
Correlation-induced synchronization of oscillations in olfactory bulb neurons.
J Neurosci. 2006 Apr 5;26(14):3646-55. doi: 10.1523/JNEUROSCI.4605-05.2006.
4
How the olfactory bulb got its glomeruli: a just so story?
Nat Rev Neurosci. 2009 Aug;10(8):611-8. doi: 10.1038/nrn2666. Epub 2009 Jul 8.
5
Normalized Neural Representations of Complex Odors.
PLoS One. 2016 Nov 11;11(11):e0166456. doi: 10.1371/journal.pone.0166456. eCollection 2016.
6
A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb.
J Neurosci. 2013 Feb 13;33(7):3037-58. doi: 10.1523/JNEUROSCI.2831-12.2013.
8
Odorant response properties of individual neurons in an olfactory glomerular module.
Neuron. 2013 Mar 20;77(6):1122-35. doi: 10.1016/j.neuron.2013.01.022.
9
Making scents out of how olfactory neurons are ordered in space.
Nat Neurosci. 2009 Feb;12(2):103-4. doi: 10.1038/nn0209-103.
10
Wiring stability of the adult Drosophila olfactory circuit after lesion.
J Neurosci. 2006 Mar 29;26(13):3367-76. doi: 10.1523/JNEUROSCI.4941-05.2006.

引用本文的文献

1
From descriptive connectome to mechanistic connectome: Generative modeling in functional magnetic resonance imaging analysis.
Front Hum Neurosci. 2022 Aug 17;16:940842. doi: 10.3389/fnhum.2022.940842. eCollection 2022.
2
A physicochemical model of odor sampling.
PLoS Comput Biol. 2021 Jun 11;17(6):e1009054. doi: 10.1371/journal.pcbi.1009054. eCollection 2021 Jun.

本文引用的文献

1
Coherent olfactory bulb gamma oscillations arise from coupling independent columnar oscillators.
J Neurophysiol. 2024 Mar 1;131(3):492-508. doi: 10.1152/jn.00361.2023. Epub 2024 Jan 24.
2
A coupled-oscillator model of olfactory bulb gamma oscillations.
PLoS Comput Biol. 2017 Nov 15;13(11):e1005760. doi: 10.1371/journal.pcbi.1005760. eCollection 2017 Nov.
3
Task Learning Promotes Plasticity of Interneuron Connectivity Maps in the Olfactory Bulb.
J Neurosci. 2016 Aug 24;36(34):8856-71. doi: 10.1523/JNEUROSCI.0794-16.2016.
4
Granule cell excitability regulates gamma and beta oscillations in a model of the olfactory bulb dendrodendritic microcircuit.
J Neurophysiol. 2016 Aug 1;116(2):522-39. doi: 10.1152/jn.00988.2015. Epub 2016 Apr 27.
5
Rhythms of the hippocampal network.
Nat Rev Neurosci. 2016 Apr;17(4):239-49. doi: 10.1038/nrn.2016.21. Epub 2016 Mar 10.
8
Neuronal organization of olfactory bulb circuits.
Front Neural Circuits. 2014 Sep 3;8:98. doi: 10.3389/fncir.2014.00098. eCollection 2014.
9
Olfactory learning promotes input-specific synaptic plasticity in adult-born neurons.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13984-9. doi: 10.1073/pnas.1404991111. Epub 2014 Sep 4.
10
Construction of odor representations by olfactory bulb microcircuits.
Prog Brain Res. 2014;208:177-203. doi: 10.1016/B978-0-444-63350-7.00007-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验