Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil.
Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Barão Geraldo, CEP 13083-970, Campinas, SP, Brazil.
Am J Bot. 2017 Oct;104(10):1493-1509. doi: 10.3732/ajb.1700302.
Bignoniaceae is an important component of neotropical forests and a model for evolutionary and biogeographical studies. A previous combination of molecular markers and morphological traits improved the phylogeny of the group. Here we demonstrate the value of next-generation sequencing (NGS) to assemble the chloroplast genome of eight Anemopaegma species and solve taxonomic problems.
Three NGS platforms were used to sequence total DNA of Anemopaegma species. After genome assembly and annotation, we compared chloroplast genomes within Anemopaegma, with other Lamiales species, and the evolutionary rates of protein-coding genes using Tanaecium tetragonolobum as the outgroup. Phylogenetic analyses of Anemopaegma with different data sets were performed.
Chloroplast genomes of Anemopaegma species ranged from 167,413 bp in A. foetidum to 168,987 bp in A. acutifolium ("typical" form). They exhibited a characteristic quadripartite structure with a large single-copy region (75,070-75,761 bp), a small single-copy region (12,766-12,817 bp) and a pair of inverted repeat regions (IRs) (39,480-40,481) encoding an identical set of 112 genes. An inversion of a fragment with ca. 8 kb, located in the IRs and containing the genes trnI-AAU, ycf2, and trnL-CAA, was observed in these chloroplast genomes when compared with those of other Lamiales.
Anemopaegma species have the largest genomes within the Lamiales possibly due to the large amount of repetitive sequences and IR expansion. Variation was higher in coding regions than in noncoding regions, and some genes were identified as markers for differentiation between species. The use of the entire chloroplast genome gave better phylogenetic resolution of the taxonomic groups. We found that two forms of A. acutifolium result from different maternal lineages.
紫葳科是新热带森林的重要组成部分,也是进化和生物地理研究的模式。先前的分子标记和形态特征的组合提高了该组的系统发育。在这里,我们展示了下一代测序 (NGS) 在组装八种鹅掌藤属物种的叶绿体基因组和解决分类问题方面的价值。
使用三种 NGS 平台对鹅掌藤属物种的总 DNA 进行测序。在基因组组装和注释之后,我们比较了鹅掌藤属内的叶绿体基因组,与其他唇形目物种的叶绿体基因组,并以 Tanaecium tetragonolobum 作为外群比较了蛋白质编码基因的进化速率。使用不同数据集对鹅掌藤属进行了系统发育分析。
鹅掌藤属物种的叶绿体基因组大小范围为 167413 bp(A. foetidum)至 168987 bp(A. acutifolium“典型”形式)。它们表现出典型的四分体结构,具有一个大的单拷贝区域(75070-75761 bp)、一个小的单拷贝区域(12766-12817 bp)和一对反向重复区域(IRs)(39480-40481),编码一套相同的 112 个基因。与其他唇形目物种相比,在这些叶绿体基因组中观察到 IRs 中约 8 kb 片段的倒位,该片段包含 trnI-AAU、ycf2 和 trnL-CAA 基因。
鹅掌藤属物种在唇形目中具有最大的基因组,可能是由于大量重复序列和 IR 扩张所致。编码区域的变异高于非编码区域,并且一些基因被鉴定为物种分化的标记。使用整个叶绿体基因组提高了分类群的系统发育分辨率。我们发现,A. acutifolium 的两种形式是由于不同的母系造成的。