Suppr超能文献

线粒体干细胞特性。

Mitostemness.

机构信息

a Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group , Catalan Institute of Oncology , Girona , Spain.

b Girona Biomedical Research Institute (IDIBGI) , Girona , Spain.

出版信息

Cell Cycle. 2018;17(8):918-926. doi: 10.1080/15384101.2018.1467679. Epub 2018 Jul 2.

Abstract

Unraveling the key mechanisms governing the retention versus loss of the cancer stem cell (CSC) state would open new therapeutic avenues to eradicate cancer. Mitochondria are increasingly recognized key drivers in the origin and development of CSC functional traits. We here propose the new term "mitostemness" to designate the mitochondria-dependent signaling functions that, evolutionary rooted in the bacterial origin of mitochondria, regulate the maintenance of CSC self-renewal and resistance to differentiation. Mitostemness traits, namely mitonuclear communication, mitoproteome components, and mitochondrial fission/fusion dynamics, can be therapeutically exploited to target the CSC state. We briefly review the pre-clinical evidence of action of investigational compounds on mitostemness traits and discuss ongoing strategies to accelerate the clinical translation of new mitostemness drugs. The recognition that the bacterial origin of present-day mitochondria can drive decision-making signaling phenomena may open up a new therapeutic dimension against life-threatening CSCs. New therapeutics aimed to target mitochondria not only as biochemical but also as biophysical and morpho-physiological hallmarks of CSC might certainly guide improvements to cancer treatment.

摘要

阐明调控癌症干细胞(CSC)保留或丢失的关键机制,将为消除癌症开辟新的治疗途径。线粒体被越来越多地认为是 CSC 功能特征起源和发展的关键驱动因素。在这里,我们提出了“线粒体干性”这一新术语,用于指定依赖线粒体的信号功能,这些功能源于线粒体的细菌起源,调节 CSC 自我更新和抵抗分化的维持。线粒体干性特征,即线粒体-核通讯、线粒体蛋白质组成分和线粒体分裂/融合动力学,可以被用于治疗靶向 CSC 状态。我们简要回顾了关于研究化合物对线粒体干性特征作用的临床前证据,并讨论了正在进行的策略,以加速新的线粒体干性药物的临床转化。认识到目前线粒体的细菌起源可以驱动决策信号现象,可能会为对抗危及生命的 CSC 开辟新的治疗维度。旨在靶向线粒体的新治疗方法不仅可以作为生物化学标志物,还可以作为 CSC 的生物物理和形态生理学标志物,肯定会指导癌症治疗的改进。

相似文献

1
Mitostemness.
Cell Cycle. 2018;17(8):918-926. doi: 10.1080/15384101.2018.1467679. Epub 2018 Jul 2.
2
Mitochondria in cancer stem cells: Achilles heel or hard armor.
Trends Cell Biol. 2023 Aug;33(8):708-727. doi: 10.1016/j.tcb.2023.03.009. Epub 2023 May 1.
3
Mitochondrial dynamics in cancer stem cells.
Cell Mol Life Sci. 2021 Apr;78(8):3803-3816. doi: 10.1007/s00018-021-03773-2. Epub 2021 Feb 13.
4
Epigenetic Control of Mitochondrial Fission Enables Self-Renewal of Stem-like Tumor Cells in Human Prostate Cancer.
Cell Metab. 2019 Aug 6;30(2):303-318.e6. doi: 10.1016/j.cmet.2019.05.004. Epub 2019 May 23.
5
Mitochondria in cancer stem cells: a target for therapy.
Recent Pat Endocr Metab Immune Drug Discov. 2013 May;7(2):102-14. doi: 10.2174/18722148113079990006.
8
Exploiting mitochondrial targeting signal(s), TPP and bis-TPP, for eradicating cancer stem cells (CSCs).
Aging (Albany NY). 2018 Feb 19;10(2):229-240. doi: 10.18632/aging.101384.
9
Mitochondrial biology in cancer stem cells.
Semin Cancer Biol. 2017 Dec;47:18-28. doi: 10.1016/j.semcancer.2017.06.012. Epub 2017 Jun 30.
10
Nanomedicine-mediated cancer stem cell therapy.
Biomaterials. 2016 Jan;74:1-18. doi: 10.1016/j.biomaterials.2015.09.037. Epub 2015 Sep 28.

引用本文的文献

6
Cancer Stem Cell Metabolism.
Adv Exp Med Biol. 2021;1311:161-172. doi: 10.1007/978-3-030-65768-0_12.
7
Mitochondrial Fission Factor (MFF) Inhibits Mitochondrial Metabolism and Reduces Breast Cancer Stem Cell (CSC) Activity.
Front Oncol. 2020 Oct 22;10:1776. doi: 10.3389/fonc.2020.01776. eCollection 2020.
8
Mitochondria in cancer.
Cell Stress. 2020 May 11;4(6):114-146. doi: 10.15698/cst2020.06.221.
9
Metabolic Escape Routes of Cancer Stem Cells and Therapeutic Opportunities.
Cancers (Basel). 2020 May 31;12(6):1436. doi: 10.3390/cancers12061436.

本文引用的文献

1
Mitochondrial DNA mutations associated with aminoglycoside induced ototoxicity.
J Otol. 2017 Mar;12(1):1-8. doi: 10.1016/j.joto.2017.02.001. Epub 2017 Feb 11.
3
Epigenetic regulation of cell fate reprogramming in aging and disease: A predictive computational model.
PLoS Comput Biol. 2018 Mar 15;14(3):e1006052. doi: 10.1371/journal.pcbi.1006052. eCollection 2018 Mar.
4
Extra-virgin olive oil contains a metabolo-epigenetic inhibitor of cancer stem cells.
Carcinogenesis. 2018 Apr 5;39(4):601-613. doi: 10.1093/carcin/bgy023.
5
A Distinct Oncogenerative Multinucleated Cancer Cell Serves as a Source of Stemness and Tumor Heterogeneity.
Cancer Res. 2018 May 1;78(9):2318-2331. doi: 10.1158/0008-5472.CAN-17-1861. Epub 2018 Feb 12.
6
How the evolution of multicellularity set the stage for cancer.
Br J Cancer. 2018 Jan;118(2):145-152. doi: 10.1038/bjc.2017.398. Epub 2018 Jan 16.
7
Metabolomic mapping of cancer stem cells for reducing and exploiting tumor heterogeneity.
Oncotarget. 2017 Oct 15;8(59):99223-99236. doi: 10.18632/oncotarget.21834. eCollection 2017 Nov 21.
8
Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism.
Oncogene. 2018 Feb 15;37(7):963-970. doi: 10.1038/onc.2017.367. Epub 2017 Oct 23.
9
The impact of cellular metabolism on chromatin dynamics and epigenetics.
Nat Cell Biol. 2017 Nov;19(11):1298-1306. doi: 10.1038/ncb3629. Epub 2017 Oct 23.
10
Mitoriboscins: Mitochondrial-based therapeutics targeting cancer stem cells (CSCs), bacteria and pathogenic yeast.
Oncotarget. 2017 Jul 7;8(40):67457-67472. doi: 10.18632/oncotarget.19084. eCollection 2017 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验