Ménédore Karimumuryango
Institut de Mathématiques et de Sciences Physiques (IMSP), Porto-Novo, Bénin.
J Inequal Appl. 2018;2018(1):126. doi: 10.1186/s13660-018-1714-y. Epub 2018 May 29.
Given a null hypersurface of a Lorentzian manifold, we isometrically immerse a null hypersurface equipped with the Riemannian metric (induced on it by the rigging) into a Riemannian manifold suitably constructed on the Lorentzian manifold. We study the intrinsic and extrinsic geometry of such an isometric immersion and we link them to the null geometry of the null hypersurface in the Lorentzian manifold. In the course of this immersion, we find the basic relationships between the main extrinsic invariants and the main intrinsic invariants, named Chen-Ricci inequalities of the null hypersurface in the Lorentzian manifold. The findings prove a topological implication of these relationships.
给定一个洛伦兹流形的零超曲面,我们将配备有黎曼度量(由索具诱导)的零超曲面等距浸入到在该洛伦兹流形上适当构造的黎曼流形中。我们研究这种等距浸入的内蕴几何和外蕴几何,并将它们与洛伦兹流形中零超曲面的零几何联系起来。在这个浸入过程中,我们找到了主要外蕴不变量和主要内蕴不变量之间的基本关系,即洛伦兹流形中零超曲面的陈 - 里奇不等式。这些发现证明了这些关系的一个拓扑蕴含。