Li Jing, Liu Fang, Zhao Peibiao
Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094 P.R. China.
J Inequal Appl. 2017;2017(1):214. doi: 10.1186/s13660-017-1483-z. Epub 2017 Sep 8.
Let [Formula: see text] be a compact convex hypersurface in [Formula: see text]. In this paper, we prove that if the principal curvatures [Formula: see text] of [Formula: see text] satisfy [Formula: see text] and [Formula: see text], then there exists no nonconstant stable -stationary map between and a compact Riemannian manifold when (6) or (7) holds.
设(\Sigma)是(\mathbb{R}^{n + 1})中的紧致凸超曲面。在本文中,我们证明,如果(\Sigma)的主曲率(\lambda_1,\cdots,\lambda_n)满足(\lambda_1\cdots\lambda_n = H^n)且(\lambda_1 + \cdots + \lambda_n = nH),那么当(6)或(7)成立时,在(\Sigma)与一个紧致黎曼流形之间不存在非常值稳定(\lambda)-平稳映射。