Suppr超能文献

一种用于拟合和预测松弛模量以及模拟粘弹性响应的数学模型。

A mathematical model for fitting and predicting relaxation modulus and simulating viscoelastic responses.

作者信息

Xu Qinwu, Engquist Björn

机构信息

Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA.

Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Proc Math Phys Eng Sci. 2018 May;474(2213):20170540. doi: 10.1098/rspa.2017.0540. Epub 2018 May 16.

Abstract

We propose a mathematical model for relaxation modulus and its numerical solution. The model formula is extended from sigmoidal function considering nonlinear strain hardening. Its physical meaning can be interpreted by a macroscale elastic network-viscous medium model with only five model parameters in a simpler format than the molecular-chain-based polymer models to represent general solid materials. We also developed a finite-element (FE) framework and robust numerical algorithm to implement this model for simulating responses under both static and dynamic loadings. We validated the model through both experimental data and numerical simulations on a variety of materials including asphalt concrete, polymer, spider silk, hydrogel, agar and bone. By satisfying the second law of thermodynamics in the form of Calusius-Duhem inequality, the model is able to simulate creep and sinusoidal deformation as well as energy dissipation. Compared to the Prony series, the widely used model with a large number of model parameters, the proposed model has improved accuracy in fitting experimental data and prediction stability outside of the experimental range with competitive numerical stability and computation speed. We also present simulation results of nonlinear stress-strain relationships of spider silk and hydrogels, and dynamic responses of a multilayer structure.

摘要

我们提出了一种松弛模量的数学模型及其数值解。该模型公式是从考虑非线性应变硬化的S形函数扩展而来的。其物理意义可以用一个宏观弹性网络 - 粘性介质模型来解释,该模型仅具有五个模型参数,比基于分子链的聚合物模型形式更简单,可用于表示一般固体材料。我们还开发了一个有限元(FE)框架和稳健的数值算法来实现该模型,以模拟静态和动态载荷下的响应。我们通过对包括沥青混凝土、聚合物、蜘蛛丝、水凝胶、琼脂和骨骼在内的多种材料进行实验数据和数值模拟来验证该模型。通过以卡卢修斯 - 杜亥姆不等式的形式满足热力学第二定律,该模型能够模拟蠕变和正弦变形以及能量耗散。与具有大量模型参数的广泛使用的普龙尼级数模型相比,所提出的模型在拟合实验数据方面具有更高的精度,并且在实验范围之外具有更好的预测稳定性,同时具有相当的数值稳定性和计算速度。我们还展示了蜘蛛丝和水凝胶的非线性应力 - 应变关系以及多层结构的动态响应的模拟结果。

相似文献

1
A mathematical model for fitting and predicting relaxation modulus and simulating viscoelastic responses.
Proc Math Phys Eng Sci. 2018 May;474(2213):20170540. doi: 10.1098/rspa.2017.0540. Epub 2018 May 16.
4
Numerical and Experimental Investigations of Polymer Viscoelastic Materials Obtained by 3D Printing.
Polymers (Basel). 2021 Sep 25;13(19):3276. doi: 10.3390/polym13193276.
5
Strain-dependent stress relaxation behavior of healthy right ventricular free wall.
Acta Biomater. 2022 Oct 15;152:290-299. doi: 10.1016/j.actbio.2022.08.043. Epub 2022 Aug 24.
6
Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.
Biomech Model Mechanobiol. 2020 Dec;19(6):2667-2681. doi: 10.1007/s10237-020-01363-y. Epub 2020 Jul 3.
8
A three-dimensional visco-hyperelastic FE model for simulating the mechanical dynamic response of preloaded phalanges.
Med Eng Phys. 2018 Nov;61:41-50. doi: 10.1016/j.medengphy.2018.08.007. Epub 2018 Sep 24.
10

引用本文的文献

1
Progress in Multiscale Modeling of Silk Materials.
Biomacromolecules. 2024 Nov 11;25(11):6987-7014. doi: 10.1021/acs.biomac.4c01122. Epub 2024 Oct 22.
2
Viscoelasticity Acts as a Marker for Tumor Extracellular Matrix Characteristics.
Front Cell Dev Biol. 2021 Dec 7;9:785138. doi: 10.3389/fcell.2021.785138. eCollection 2021.
3
Soft Polymer-Based Technique for Cellular Force Sensing.
Polymers (Basel). 2021 Aug 10;13(16):2672. doi: 10.3390/polym13162672.
4
State-Of-The-Art Quantification of Polymer Solution Viscosity for Plastic Waste Recycling.
ChemSusChem. 2021 Oct 5;14(19):4071-4102. doi: 10.1002/cssc.202100876. Epub 2021 Aug 27.

本文引用的文献

2
Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012320. doi: 10.1103/PhysRevE.92.012320. Epub 2015 Jul 22.
3
Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity.
Nat Mater. 2013 Oct;12(10):932-7. doi: 10.1038/nmat3713. Epub 2013 Jul 28.
4
Prony series spectra of structural relaxation in N-BK7 for finite element modeling.
J Phys Chem A. 2012 Dec 20;116(50):12198-205. doi: 10.1021/jp307717q. Epub 2012 Dec 6.
5
Viscoelastic behaviors in polymeric nanodroplet collisions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 1):041302. doi: 10.1103/PhysRevE.83.041302. Epub 2011 Apr 19.
6
Viscoelastic solids explain spider web stickiness.
Nat Commun. 2010 May 17;1:19. doi: 10.1038/ncomms1019.
7
Supermacroprous chitosan-agarose-gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering.
J R Soc Interface. 2011 Apr 6;8(57):540-54. doi: 10.1098/rsif.2010.0455. Epub 2010 Oct 13.
8
The elaborate structure of spider silk: structure and function of a natural high performance fiber.
Prion. 2008 Oct-Dec;2(4):154-61. doi: 10.4161/pri.2.4.7490. Epub 2008 Oct 20.
10
Anisotropic viscoelastic properties of cortical bone.
J Biomech. 2004 Sep;37(9):1433-7. doi: 10.1016/j.jbiomech.2003.12.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验