Suppr超能文献

球形帽的静态双稳性

Static bistability of spherical caps.

作者信息

Taffetani Matteo, Jiang Xin, Holmes Douglas P, Vella Dominic

机构信息

Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK.

Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA.

出版信息

Proc Math Phys Eng Sci. 2018 May;474(2213):20170910. doi: 10.1098/rspa.2017.0910. Epub 2018 May 16.

Abstract

Depending on its geometry, a spherical shell may exist in one of two stable states without the application of any external force: there are two 'self-equilibrated' states, one natural and the other inside out (or 'everted'). Though this is familiar from everyday life-an umbrella is remarkably stable, yet a contact lens can be easily turned inside out-the precise shell geometries for which bistability is possible are not known. Here, we use experiments and finite-element simulations to determine the threshold between bistability and monostability for shells of different solid angle. We compare these results with the prediction from shallow shell theory, showing that, when appropriately modified, this offers a very good account of bistability even for relatively deep shells. We then investigate the robustness of this bistability against pointwise indentation. We find that indentation provides a continuous route for transition between the two states for shells whose geometry makes them close to the threshold. However, for thinner shells, indentation leads to asymmetrical buckling before snap-through, while also making these shells more 'robust' to snap-through. Our work sheds new light on the robustness of the 'mirror buckling' symmetry of spherical shell caps.

摘要

取决于其几何形状,球形壳在不施加任何外力的情况下可能处于两种稳定状态之一:存在两种“自平衡”状态,一种是自然状态,另一种是内外翻转(或“外翻”)状态。尽管这在日常生活中很常见——雨伞非常稳定,但隐形眼镜却很容易被翻过来——但尚不清楚实现双稳态的精确壳几何形状。在这里,我们使用实验和有限元模拟来确定不同立体角壳的双稳态和单稳态之间的阈值。我们将这些结果与浅壳理论的预测进行比较,结果表明,经过适当修改后,即使对于相对较深的壳,该理论也能很好地解释双稳态。然后,我们研究了这种双稳态对点状压痕的鲁棒性。我们发现,对于几何形状使其接近阈值的壳,压痕为两种状态之间的转变提供了一条连续的途径。然而,对于较薄的壳,压痕会导致在突然转变之前出现不对称屈曲,同时也使这些壳对突然转变更“鲁棒”。我们的工作为球形壳帽的“镜像屈曲”对称性的鲁棒性提供了新的见解。

相似文献

1
Static bistability of spherical caps.
Proc Math Phys Eng Sci. 2018 May;474(2213):20170910. doi: 10.1098/rspa.2017.0910. Epub 2018 May 16.
2
The shallow shell approach to Pogorelov's problem and the breakdown of 'mirror buckling'.
Proc Math Phys Eng Sci. 2016 Mar;472(2187):20150732. doi: 10.1098/rspa.2015.0732.
3
Axisymmetric ridges and circumferential buckling of indented shells of revolution.
Phys Rev E. 2022 Jun;105(6-2):065003. doi: 10.1103/PhysRevE.105.065003.
5
Pseudo-bistability of viscoelastic shells.
Philos Trans A Math Phys Eng Sci. 2023 Apr 3;381(2244):20220026. doi: 10.1098/rsta.2022.0026. Epub 2023 Feb 13.
6
Probabilistic buckling of imperfect hemispherical shells containing a distribution of defects.
Philos Trans A Math Phys Eng Sci. 2023 Apr 3;381(2244):20220298. doi: 10.1098/rsta.2022.0298. Epub 2023 Feb 13.
8
Bistable polar-orthotropic shallow shells.
R Soc Open Sci. 2019 Aug 7;6(8):190888. doi: 10.1098/rsos.190888. eCollection 2019 Aug.
9
The secondary buckling transition: wrinkling of buckled spherical shells.
Eur Phys J E Soft Matter. 2014 Jul;37(7):18. doi: 10.1140/epje/i2014-14062-9. Epub 2014 Jul 23.
10
Buckling of spherical shells adhering onto a rigid substrate.
Eur Phys J E Soft Matter. 2005 Nov;18(3):343-58. doi: 10.1140/epje/e2005-00038-5. Epub 2005 Nov 15.

引用本文的文献

1
Coaxial Direct Ink Writing of Cholesteric Liquid Crystal Elastomers in 3D Architectures.
Adv Mater. 2025 Mar;37(10):e2416621. doi: 10.1002/adma.202416621. Epub 2025 Jan 26.
2
Bistable Soft Shells for Programmable Mechanical Logic.
Adv Sci (Weinh). 2025 Feb;12(5):e2412372. doi: 10.1002/advs.202412372. Epub 2024 Dec 6.
3
Leaping liquid crystal elastomers.
Sci Adv. 2023 Jan 18;9(3):eade1320. doi: 10.1126/sciadv.ade1320.
4
Curvature-driven instabilities in thin active shells.
R Soc Open Sci. 2022 Oct 12;9(10):220487. doi: 10.1098/rsos.220487. eCollection 2022 Oct.
5
Universally bistable shells with nonzero Gaussian curvature for two-way transition waves.
Nat Commun. 2021 Jan 29;12(1):695. doi: 10.1038/s41467-020-20698-9.
6
Dome-Patterned Metamaterial Sheets.
Adv Sci (Weinh). 2020 Oct 7;7(22):2001955. doi: 10.1002/advs.202001955. eCollection 2020 Nov.
7
Bistable polar-orthotropic shallow shells.
R Soc Open Sci. 2019 Aug 7;6(8):190888. doi: 10.1098/rsos.190888. eCollection 2019 Aug.

本文引用的文献

1
Curvature-Induced Instabilities of Shells.
Phys Rev Lett. 2018 Jan 26;120(4):048002. doi: 10.1103/PhysRevLett.120.048002.
2
Indentation of a floating elastic sheet: geometry versus applied tension.
Proc Math Phys Eng Sci. 2017 Oct;473(2206):20170335. doi: 10.1098/rspa.2017.0335. Epub 2017 Oct 11.
3
Passive Control of Viscous Flow via Elastic Snap-Through.
Phys Rev Lett. 2017 Oct 6;119(14):144502. doi: 10.1103/PhysRevLett.119.144502. Epub 2017 Oct 4.
4
Adaptive compliant structures for flow regulation.
Proc Math Phys Eng Sci. 2017 Aug;473(2204):20170334. doi: 10.1098/rspa.2017.0334. Epub 2017 Aug 16.
5
Effects of boundary conditions on bistable behaviour in axisymmetrical shallow shells.
Proc Math Phys Eng Sci. 2017 Jul;473(2203):20170230. doi: 10.1098/rspa.2017.0230. Epub 2017 Jul 19.
6
Curvature-driven morphing of non-Euclidean shells.
Proc Math Phys Eng Sci. 2017 May;473(2201):20170087. doi: 10.1098/rspa.2017.0087. Epub 2017 May 31.
8
The shallow shell approach to Pogorelov's problem and the breakdown of 'mirror buckling'.
Proc Math Phys Eng Sci. 2016 Mar;472(2187):20150732. doi: 10.1098/rspa.2015.0732.
9
Fabrication of slender elastic shells by the coating of curved surfaces.
Nat Commun. 2016 Apr 4;7:11155. doi: 10.1038/ncomms11155.
10
The secondary buckling transition: wrinkling of buckled spherical shells.
Eur Phys J E Soft Matter. 2014 Jul;37(7):18. doi: 10.1140/epje/i2014-14062-9. Epub 2014 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验