Department of Physics and Astronomy, Laboratory of Solid State Physics and Magnetism, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium.
Nanoscale. 2018 Jun 21;10(24):11467-11476. doi: 10.1039/c8nr03222j.
Luminescent silver clusters (AgCLs) stabilized inside partially Ag exchanged Na LTA zeolites show a remarkable reversible on-off switching of their green-yellowish luminescence that is easily tuned by a hydration and dehydration cycle, making them very promising materials for sensing applications. We have used a unique combination of photoluminescence (PL), UV-visible-NIR Diffuse Reflectance (DRS), X-ray absorption fine structure (XAFS), Fourier Transform-Infrared (FTIR) and electron spin resonance (ESR) spectroscopies to unravel the atomic-scale structural changes responsible for the reversible optical behavior of the confined AgCLs in LTA zeolites. Water coordinated, diamagnetic, tetrahedral AgCLs [Ag4(H2O)4]2+ with Ag atoms positioned along the axis of the sodalite six-membered rings are at the origin of the broad and intense green-yellowish luminescence in the hydrated sample. Upon dehydration, luminescent [Ag4(H2O)4]2+ clusters are transformed into non-luminescent (dark), diamagnetic, octahedral AgCLs [Ag6(OF)14]2+ with Ag atoms interacting strongly with zeolite framework oxygen (OF) of the sodalite four-membered rings. This highly responsive on-off switching reveals that besides quantum confinement and molecular-size, coordinated water and framework oxygen ligands strongly affect the organization of AgCLs valence electrons and play a crucial role in the opto-structural properties of AgCLs.
具有部分银交换的 Na LTA 沸石内部稳定的发光银纳米团簇 (AgCLs) 表现出其绿黄色发光的显著可逆开-关切换,这种切换很容易通过水合和脱水循环进行调节,使它们成为非常有前途的传感应用材料。我们使用了独特的组合光致发光 (PL)、紫外可见近红外漫反射 (DRS)、X 射线吸收精细结构 (XAFS)、傅里叶变换红外 (FTIR) 和电子自旋共振 (ESR) 光谱学来揭示原子尺度结构变化,这些结构变化负责限制在 LTA 沸石中的 AgCLs 的可逆光学行为。与水配位的、抗磁性的、四面体 AgCLs [Ag4(H2O)4]2+,其中 Ag 原子位于方钠石六元环的轴线上,是水合样品中宽而强的绿黄色发光的起源。在脱水过程中,发光的 [Ag4(H2O)4]2+ 团簇转化为非发光(暗)、抗磁性、八面体 AgCLs [Ag6(OF)14]2+,其中 Ag 原子与方钠石四元环的沸石骨架氧 (OF) 强烈相互作用。这种高响应的开-关切换表明,除了量子限制和分子尺寸外,配位水和骨架氧配体强烈影响 AgCLs 价电子的组织,并在 AgCLs 的光电结构性质中发挥关键作用。