Suppr超能文献

脆性 X 综合征小鼠中内稳态网络可塑性的失调和恢复。

Dysregulation and restoration of homeostatic network plasticity in fragile X syndrome mice.

机构信息

Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Neuropharmacology. 2018 Aug;138:182-192. doi: 10.1016/j.neuropharm.2018.06.011. Epub 2018 Jun 8.

Abstract

Chronic activity perturbations in neurons induce homeostatic plasticity through modulation of synaptic strength or other intrinsic properties to maintain the correct physiological range of excitability. Although similar plasticity can also occur at the population level, what molecular mechanisms are involved remain unclear. In the current study, we utilized a multielectrode array (MEA) recording system to evaluate homeostatic neural network activity of primary mouse cortical neuron cultures. We demonstrated that chronic elevation of neuronal activity through the inhibition of GABA(A) receptors elicits synchronization of neural network activity and homeostatic reduction of the amplitude of spontaneous neural network spikes. We subsequently showed that this phenomenon is mediated by the ubiquitination of tumor suppressor p53, which is triggered by murine double minute-2 (Mdm2). Using a mouse model of fragile X syndrome, in which fragile X mental retardation protein (FMRP) is absent (Fmr1 knockout), we found that Mdm2-p53 signaling, network synchronization, and the reduction of network spike amplitude upon chronic activity stimulation were all impaired. Pharmacologically inhibiting p53 with Pifithrin-α or genetically employing p53 heterozygous mice to enforce the inactivation of p53 in Fmr1 knockout cultures restored the synchronization of neural network activity after chronic activity stimulation and partially corrects the homeostatic reduction of neural network spike amplitude. Together, our findings reveal the roles of both Fmr1 and Mdm2-p53 signaling in the homeostatic regulation of neural network activity and provide insight into the deficits of excitability homeostasis seen when Fmr1 is compromised, such as occurs with fragile X syndrome.

摘要

神经元的慢性活动扰动通过调节突触强度或其他内在特性诱导稳态可塑性,以维持正确的兴奋性生理范围。尽管类似的可塑性也可能发生在群体水平,但涉及哪些分子机制仍不清楚。在本研究中,我们利用多电极阵列 (MEA) 记录系统评估原代小鼠皮质神经元培养物的稳态神经网络活动。我们证明,通过抑制 GABA(A) 受体来慢性升高神经元活动会引发神经网络活动的同步和自发性神经网络尖峰幅度的稳态降低。随后我们表明,这种现象是由肿瘤抑制蛋白 p53 的泛素化介导的,而 p53 的泛素化是由鼠双微体 2 (Mdm2) 触发的。使用脆性 X 综合征的小鼠模型,其中缺乏脆性 X 智力低下蛋白 (FMRP)(Fmr1 敲除),我们发现 Mdm2-p53 信号通路、网络同步以及慢性活动刺激后网络尖峰幅度的降低均受到损害。用 Pifithrin-α 抑制 p53 或通过遗传手段在 Fmr1 敲除培养物中使用 p53 杂合子小鼠强制使 p53 失活,可恢复慢性活动刺激后的神经网络活动同步,并部分纠正神经网络尖峰幅度的稳态降低。总之,我们的发现揭示了 Fmr1 和 Mdm2-p53 信号通路在神经网络活动稳态调节中的作用,并深入了解了 Fmr1 受损时兴奋性稳态的缺陷,如脆性 X 综合征。

相似文献

引用本文的文献

5
Hyperexcitability and Homeostasis in Fragile X Syndrome.脆性X综合征中的兴奋性过高与体内平衡
Front Mol Neurosci. 2022 Jan 6;14:805929. doi: 10.3389/fnmol.2021.805929. eCollection 2021.

本文引用的文献

3
Multifarious Functions of the Fragile X Mental Retardation Protein.脆性X智力低下蛋白的多种功能
Trends Genet. 2017 Oct;33(10):703-714. doi: 10.1016/j.tig.2017.07.008. Epub 2017 Aug 18.
6
The Role of MDM2 Amplification and Overexpression in Tumorigenesis.MDM2基因扩增及过表达在肿瘤发生中的作用
Cold Spring Harb Perspect Med. 2016 Jun 1;6(6):a026336. doi: 10.1101/cshperspect.a026336.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验