Dept. Geology & Geophysics, Texas A&M University, College Station 77843, USA.
Dept. Mines, Metallurgy and Geology Engineering, University of Guanajuato, 36000, Mexico.
Sci Total Environ. 2018 May 1;622-623:1029-1045. doi: 10.1016/j.scitotenv.2017.12.031. Epub 2017 Dec 13.
Fluoride (F), naturally found in aquifers around the world at toxic concentrations, causes disease in millions of people. The long-term stability, however, of those concentrations within intensively pumped aquifers is poorly characterized. We assessed long-term stability in the spatial distribution of F concentrations in an intensively pumped aquifer within the semi-arid, inter-montane Independence Basin in central Mexico between 1999 and 2016. Although stable in 16 re-sampled wells, F concentrations increased in some localities across the basin by as much as 4mg/L. Changes in recharge pathways to the deep aquifer were identified by analyzing changes in δH, δO and Cl/Br mass ratios. In 1999, δH and δO values suggested the aquifer was recharged in the mountains. In 2016, however, substantial increases in δO values in the center of the basin suggest recharge water is derived from rainfall that had experienced increased evaporation. In 1999, the mass ratio Cl/Br in groundwater was slightly enriched over local rainfall, and followed a single mixing line on a plot of Cl. vs. Cl/Br. In 2016, however, three distinct groupings of wells were evident, all following different mixing lines. These changes suggest input from new sources including urban sewage, evaporate dissolution, connate sea water and geothermal waters. Step-wise multiple regression was used to quantify the impact of physical and chemical parameters on F concentrations. In 1999, Li (6.8±1.7) and Na (0.01±0.004) drove F concentrations (R=0.54). In 2016, Na (0.013±0.0018), HCO (0.004±0.001), Ca (-0.0018±0.00045), and Mg (-0.055±0.023) drove F concentrations (0.78). Irrigation pumping and urban expansion within semi-arid, groundwater-dependent, inter-montane basins drive mixing of disparate groundwater chemistries and introduces new sources of recharge to aquifers inducing changes in aquifer chemistry including increasing concentrations of geogenic toxic elements.
氟化物(F)在世界各地的含水层中以有毒浓度自然存在,导致数百万人患病。然而,在高强度抽水中,这些浓度在含水层中的长期稳定性特征描述较差。我们评估了在 1999 年至 2016 年间,位于墨西哥中部半干旱山间独立盆地中的一个高强度抽水中的氟化物浓度在空间分布上的长期稳定性。尽管在 16 个重新采样的井中稳定,但在整个盆地的一些地方,氟化物浓度增加了多达 4mg/L。通过分析 δH、δO 和 Cl/Br 质量比的变化,确定了深层含水层补给途径的变化。1999 年,δH 和 δO 值表明含水层在山区得到补给。然而,在 2016 年,盆地中心的 δO 值显著增加,表明补给水来自经历了更多蒸发的雨水。1999 年,地下水的 Cl/Br 质量比略高于当地降雨量,并且在 Cl. 与 Cl/Br 的图上遵循单一混合线。然而,在 2016 年,显然存在三个不同的井组,它们都遵循不同的混合线。这些变化表明有新的来源输入,包括城市污水、蒸发溶解、原生海水和地热水。逐步多元回归用于量化物理和化学参数对 F 浓度的影响。1999 年,Li(6.8±1.7)和 Na(0.01±0.004)驱动 F 浓度(R=0.54)。2016 年,Na(0.013±0.0018)、HCO(0.004±0.001)、Ca(-0.0018±0.00045)和 Mg(-0.055±0.023)驱动 F 浓度(0.78)。在半干旱、依赖地下水的山间盆地中,灌溉抽取和城市扩张导致不同地下水化学性质的混合,并向含水层引入新的补给来源,导致含水层化学性质发生变化,包括增加地球成因有毒元素的浓度。