Suppr超能文献

筛查拭子优于传统危险因素,可预测 MRSA 菌血症。

Screening swabs surpass traditional risk factors as predictors of MRSA bacteremia.

机构信息

Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, 1001 Boulevard Décarie, room E05. 1917, Montreal, Quebec, H4A 3J1, Canada.

Division of General Internal Medicine, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada.

出版信息

BMC Infect Dis. 2018 Jun 11;18(1):270. doi: 10.1186/s12879-018-3182-x.

Abstract

BACKGROUND

Consideration to add empiric MRSA therapy with vancomycin is a common clinical dilemma. However, vancomycin overuse has important adverse events. MRSA colonization screening is commonly performed for infection control. We hypothesized that in cases of S. aureus bacteremia, a score based on patient level factors and MRSA colonization could predict the risk of MRSA infection and inform the need for empiric coverage.

METHODS

Using modern machine learning statistical methods (LASSO regression and random forests), we designed a predictive score for MRSA infection based on patient level characteristics, and MRSA colonization as measured by screening done 30 days before infection (30-Day criteria), or at any time before infection (Ever-Positive criteria). Patient factors (age, sex, number of previous admissions, and other medical comorbidities) were obtained through our electronic records.

RESULTS

With random forests, MRSA colonization largely surpassed all other factors in terms of accuracy and discriminatory power. Using LASSO regression, MRSA colonization was the only factor with MRSA infection predictive power with odds ratio of 10.3 (min: 5.99, max: 16.1) and 8.14 (min: 6.01, max: 14.8) for the 30-Day and Ever-Positive criteria, respectively. Further, patient comorbidities were not adequate predictors of MRSA colonization.

CONCLUSIONS

In an era of community acquired MRSA, colonization status appears to be the only independent and reliable predictor of MRSA infection in cases of S. aureus bacteremia. A clinical approach based on a patient's known MRSA colonization status and on local susceptibility patterns may be appropriate.

摘要

背景

考虑添加经验性万古霉素治疗耐甲氧西林金黄色葡萄球菌(MRSA)是一个常见的临床难题。然而,万古霉素的过度使用会带来重要的不良事件。MRSA 定植筛查常用于感染控制。我们假设,在金黄色葡萄球菌菌血症的情况下,基于患者水平因素和 MRSA 定植的评分可以预测 MRSA 感染的风险,并为经验性覆盖提供依据。

方法

我们使用现代机器学习统计方法(LASSO 回归和随机森林),基于患者水平特征和 30 天前感染时(30 天标准)或感染前任何时间(定植阳性标准)进行的 MRSA 定植筛查,设计了一个用于预测 MRSA 感染的评分。患者因素(年龄、性别、既往住院次数和其他合并症)通过电子病历获得。

结果

随机森林表明,MRSA 定植在准确性和区分能力方面大大超过了所有其他因素。使用 LASSO 回归,MRSA 定植是唯一具有 MRSA 感染预测能力的因素,其比值比分别为 10.3(最小:5.99,最大:16.1)和 8.14(最小:6.01,最大:14.8),适用于 30 天标准和定植阳性标准。此外,患者合并症不能充分预测 MRSA 定植。

结论

在社区获得性 MRSA 时代,定植状态似乎是金黄色葡萄球菌菌血症患者发生 MRSA 感染的唯一独立且可靠的预测因素。一种基于患者已知的 MRSA 定植状态和当地药敏模式的临床方法可能是合适的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验