Brenig Léon
Service de Physique des Systèmes Dynamiques, Faculté des Sciences, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
Philos Trans A Math Phys Eng Sci. 2018 Jul 28;376(2124). doi: 10.1098/rsta.2017.0384.
A global framework for treating nonlinear differential dynamical systems is presented. It rests on the fact that most systems can be transformed into the quasi-polynomial format. Any system in this format belongs to an infinite equivalence class characterized by two canonical forms, the Lotka-Volterra (LV) and the monomial systems. Both forms allow for finding total or partial integrability conditions, invariants and dimension reductions of the original systems. The LV form also provides Lyapunov functions and systematic tools for stability analysis. An abstract Lie algebra is shown to underlie the whole formalism. This abstract algebra can be expressed in several realizations among which are the bosonic creation-destruction operators. One of these representations allows one to obtain the analytic form of the general coefficient of the Taylor series representing the solution of the original system. This generates a new class of special functions that are solutions of these nonlinear dynamical systems. From the monomial canonical form, one can prove an equivalence relationship between urn processes and dynamical systems. This establishes a new link between nonlinear dynamics and stochastic processes.This article is part of the theme issue 'Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 1)'.
提出了一种用于处理非线性微分动力系统的全局框架。它基于这样一个事实,即大多数系统都可以转化为准多项式形式。这种形式的任何系统都属于一个由两种规范形式(洛特卡 - 沃尔泰拉(LV)形式和单项式系统)所表征的无限等价类。这两种形式都有助于找到原始系统的完全或部分可积性条件、不变量和维数约化。LV形式还为稳定性分析提供了李雅普诺夫函数和系统工具。结果表明,一个抽象李代数是整个形式体系的基础。这个抽象代数可以用几种实现方式来表示,其中包括玻色子产生 - 湮灭算符。这些表示之一使人们能够获得表示原始系统解的泰勒级数的一般系数的解析形式。这产生了一类作为这些非线性动力系统解的新的特殊函数。从单项式规范形式出发,可以证明瓮过程与动力系统之间的等价关系。这在非线性动力学和随机过程之间建立了新的联系。本文是主题为“非平衡态物质中的耗散结构:来自化学、光子学和生物学(第1部分)”的特刊的一部分。