Hernández-Bermejo B, Fairén V
Departamento de Física Fundamental, Universidad Nacional de Educación a Distancia, Madrid, Spain.
Math Biosci. 1997 Feb;140(1):1-32. doi: 10.1016/s0025-5564(96)00131-9.
In this article we elaborate on the structure of the generalized Lotka-Volterra (GLV) form for nonlinear differential equations. We discuss here the algebraic properties of the GLV family, such as the invariance under quasimonomial transformations and the underlying structure of classes of equivalence. Each class possesses a unique representative under the classical quadratic Lotka-Volterra form. We show how other standard modeling forms of biological interest, such as S-systems or mass-action systems, are naturally embedded into the GLV form, which thus provides a formal framework for their comparison and for the establishment of transformation rules. We also focus on the issue of recasting of general nonlinear systems into the GLV format. We present a procedure for doing so and point at possible sources of ambiguity that could make the resulting Lotka-Volterra system dependent on the path followed. We then provide some general theorems that define the operational and algorithmic framework in which this is not the case.
在本文中,我们详细阐述了非线性微分方程的广义Lotka-Volterra(GLV)形式的结构。我们在此讨论GLV族的代数性质,例如在拟单项式变换下的不变性以及等价类的底层结构。在经典二次Lotka-Volterra形式下,每个类都有一个唯一的代表。我们展示了其他具有生物学意义的标准建模形式,如S-系统或质量作用系统,是如何自然地嵌入到GLV形式中的,从而为它们的比较和变换规则的建立提供了一个形式框架。我们还关注将一般非线性系统重铸为GLV格式的问题。我们提出了这样做的一个程序,并指出可能导致歧义的来源,这些歧义可能使所得的Lotka-Volterra系统依赖于所遵循的路径。然后,我们提供了一些一般性定理,这些定理定义了并非如此的操作和算法框架。