Suppr超能文献

NOS3 抑制通过维持线粒体动力学和 Miro-2 水平为年轻和衰老的白质完整性提供缺血后保护。

NOS3 Inhibition Confers Post-Ischemic Protection to Young and Aging White Matter Integrity by Conserving Mitochondrial Dynamics and Miro-2 Levels.

机构信息

Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, Ohio 44195.

Department of Neurosciences, Cleveland Clinic Foundation, Cleveland, Ohio 44195

出版信息

J Neurosci. 2018 Jul 11;38(28):6247-6266. doi: 10.1523/JNEUROSCI.3017-17.2018. Epub 2018 Jun 11.

Abstract

White matter (WM) damage following a stroke underlies a majority of the neurological disability that is subsequently observed. Although ischemic injury mechanisms are age-dependent, conserving axonal mitochondria provides consistent post-ischemic protection to young and aging WM. Nitric oxide synthase (NOS) activation is a major cause of oxidative and mitochondrial injury in gray matter during ischemia; therefore, we used a pure WM tract, isolated male mouse optic nerve, to investigate whether NOS inhibition provides post-ischemic functional recovery by preserving mitochondria. We show that pan-NOS inhibition applied before oxygen-glucose deprivation (OGD) promotes functional recovery of young and aging axons and preserves WM cellular architecture. This protection correlates with reduced nitric oxide (NO) generation, restored glutathione production, preserved axonal mitochondria and oligodendrocytes, and preserved ATP levels. Pan-NOS inhibition provided post-ischemic protection to only young axons, whereas selective inhibition of NOS3 conferred post-ischemic protection to both young and aging axons. Concurrently, genetic deletion of NOS3 conferred long-lasting protection to young axons against ischemia. OGD upregulated NOS3 levels in astrocytes, and we show for the first time that inhibition of NOS3 generation in glial cells prevents axonal mitochondrial fission and restores mitochondrial motility to confer protection to axons by preserving Miro-2 levels. Interestingly, NOS1 inhibition exerted post-ischemic protection selectively to aging axons, which feature age-dependent mechanisms of oxidative injury in WM. Our study provides the first evidence that inhibition of glial NOS activity confers long-lasting benefits to WM function and structure and suggests caution in defining the role of NO in cerebral ischemia at vascular and cellular levels. White matter (WM) injury during stroke is manifested as the subsequent neurological disability in surviving patients. Aging primarily impacts CNS WM and mechanisms of ischemic WM injury change with age. Nitric oxide is involved in various mitochondrial functions and we propose that inhibition of glia-specific nitric oxide synthase (NOS) isoforms promotes axon function recovery by preserving mitochondrial structure, function, integrity, and motility. Using electrophysiology and three-dimensional electron microscopy, we show that NOS3 inhibition provides a common target to improve young and aging axon function, whereas NOS1 inhibition selectively protects aging axons when applied after injury. This study provides the first evidence that inhibition of glial cell NOS activity confers long-lasting benefits to WM structure and function.

摘要

中风后的白质(WM)损伤是随后观察到的大多数神经功能障碍的基础。尽管缺血性损伤机制与年龄有关,但保留轴突线粒体为年轻和衰老的 WM 提供一致的缺血后保护。一氧化氮合酶(NOS)的激活是缺血期间灰质中氧化和线粒体损伤的主要原因;因此,我们使用纯 WM 束,即分离的雄性小鼠视神经,来研究 NOS 抑制是否通过保留线粒体来提供缺血后的功能恢复。我们发现,在氧葡萄糖剥夺(OGD)之前应用全 NOS 抑制可促进年轻和衰老轴突的功能恢复并维持 WM 细胞结构。这种保护与减少一氧化氮(NO)生成、恢复谷胱甘肽生成、保留轴突线粒体和少突胶质细胞以及维持 ATP 水平相关。全 NOS 抑制仅对年轻轴突提供缺血后保护,而选择性抑制 NOS3 则对年轻和衰老轴突均提供缺血后保护。同时,NOS3 的基因缺失赋予年轻轴突对缺血的持久保护。OGD 上调星形胶质细胞中的 NOS3 水平,我们首次表明,抑制胶质细胞中 NOS3 的产生可防止轴突线粒体裂变,并通过维持 Miro-2 水平恢复线粒体运动,从而为轴突提供保护。有趣的是,NOS1 抑制选择性地对衰老轴突发挥缺血后保护作用,衰老轴突具有 WM 中氧化损伤的依赖于年龄的机制。我们的研究首次提供证据表明,抑制胶质细胞 NOS 活性可长期有益于 WM 功能和结构,并表明在血管和细胞水平上定义 NO 在脑缺血中的作用时应谨慎。中风期间的 WM 损伤表现为存活患者随后出现的神经功能障碍。衰老主要影响中枢神经系统 WM,并且缺血性 WM 损伤的机制随年龄而变化。一氧化氮参与各种线粒体功能,我们提出抑制胶质特异性一氧化氮合酶(NOS)同工型可通过维持线粒体结构、功能、完整性和运动性来促进轴突功能恢复。我们使用电生理学和三维电子显微镜显示,NOS3 抑制为改善年轻和衰老轴突功能提供了共同靶点,而 NOS1 抑制在损伤后应用时选择性地保护衰老轴突。这项研究首次提供证据表明,抑制神经胶质细胞 NOS 活性可长期有益于 WM 结构和功能。

相似文献

2
Preserving Mitochondrial Structure and Motility Promotes Recovery of White Matter After Ischemia.
Neuromolecular Med. 2019 Dec;21(4):484-492. doi: 10.1007/s12017-019-08550-w. Epub 2019 May 31.
5
Age-Related Changes in Axonal and Mitochondrial Ultrastructure and Function in White Matter.
J Neurosci. 2016 Sep 28;36(39):9990-10001. doi: 10.1523/JNEUROSCI.1316-16.2016.
6
Ischemic Preconditioning in White Matter: Magnitude and Mechanism.
J Neurosci. 2015 Nov 25;35(47):15599-611. doi: 10.1523/JNEUROSCI.2544-15.2015.
8
White matter axon vulnerability to AMPA/kainate receptor-mediated ischemic injury is developmentally regulated.
J Neurosci. 2007 Apr 11;27(15):4220-9. doi: 10.1523/JNEUROSCI.5542-06.2007.
9
Casein Kinase 2 Signaling in White Matter Stroke.
Front Mol Biosci. 2022 Jul 13;9:908521. doi: 10.3389/fmolb.2022.908521. eCollection 2022.
10
Age-specific localization of NMDA receptors on oligodendrocytes dictates axon function recovery after ischemia.
Neuropharmacology. 2016 Nov;110(Pt B):626-632. doi: 10.1016/j.neuropharm.2015.09.015. Epub 2015 Sep 25.

引用本文的文献

2
Preconditioning exercise reduces brain damage of ischemic stroke in rats via PI3K-AKT pathway by bioinformatic analysis.
Exp Brain Res. 2024 Apr;242(4):869-878. doi: 10.1007/s00221-024-06778-y. Epub 2024 Feb 29.
3
Aging Effects on Optic Nerve Neurodegeneration.
Int J Mol Sci. 2023 Jan 29;24(3):2573. doi: 10.3390/ijms24032573.
4
Casein Kinase 2 Signaling in White Matter Stroke.
Front Mol Biosci. 2022 Jul 13;9:908521. doi: 10.3389/fmolb.2022.908521. eCollection 2022.
5
Aging astrocytes metabolically support aging axon function by proficiently regulating astrocyte-neuron lactate shuttle.
Exp Neurol. 2022 Nov;357:114173. doi: 10.1016/j.expneurol.2022.114173. Epub 2022 Jul 19.
6
Oxygen-Glucose Deprivation Decreases the Motility and Length of Axonal Mitochondria in Cultured Dorsal Root Ganglion Cells of Rats.
Cell Mol Neurobiol. 2023 Apr;43(3):1267-1280. doi: 10.1007/s10571-022-01247-y. Epub 2022 Jun 30.
7
8
Mitochondrial Dynamics: A Potential Therapeutic Target for Ischemic Stroke.
Front Aging Neurosci. 2021 Sep 7;13:721428. doi: 10.3389/fnagi.2021.721428. eCollection 2021.
9
IL-10 Dysregulation Underlies Chemokine Insufficiency, Delayed Macrophage Response, and Impaired Healing in Diabetic Wounds.
J Invest Dermatol. 2022 Mar;142(3 Pt A):692-704.e14. doi: 10.1016/j.jid.2021.08.428. Epub 2021 Sep 10.
10
Ex Vivo Studies of Optic Nerve Axon Electrophysiology.
Methods Mol Biol. 2020;2143:169-177. doi: 10.1007/978-1-0716-0585-1_13.

本文引用的文献

2
A new mode of mitochondrial transport and polarized sorting regulated by Dynein, Milton and Miro.
Development. 2016 Nov 15;143(22):4203-4213. doi: 10.1242/dev.138289. Epub 2016 Oct 5.
3
Age-Related Changes in Axonal and Mitochondrial Ultrastructure and Function in White Matter.
J Neurosci. 2016 Sep 28;36(39):9990-10001. doi: 10.1523/JNEUROSCI.1316-16.2016.
4
Microglial Contact Prevents Excess Depolarization and Rescues Neurons from Excitotoxicity.
eNeuro. 2016 Jun 21;3(3). doi: 10.1523/ENEURO.0004-16.2016. eCollection 2016 May-Jun.
5
Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism.
Neuron. 2016 Jul 6;91(1):119-32. doi: 10.1016/j.neuron.2016.05.016. Epub 2016 Jun 9.
6
MIRO GTPases in Mitochondrial Transport, Homeostasis and Pathology.
Cells. 2015 Dec 31;5(1):1. doi: 10.3390/cells5010001.
7
Age-specific localization of NMDA receptors on oligodendrocytes dictates axon function recovery after ischemia.
Neuropharmacology. 2016 Nov;110(Pt B):626-632. doi: 10.1016/j.neuropharm.2015.09.015. Epub 2015 Sep 25.
8
Brain Injury in the Preterm Infant: New Horizons for Pathogenesis and Prevention.
Pediatr Neurol. 2015 Sep;53(3):185-92. doi: 10.1016/j.pediatrneurol.2015.04.006. Epub 2015 Apr 18.
9
Nitric oxide and mitochondria in metabolic syndrome.
Front Physiol. 2015 Feb 17;6:20. doi: 10.3389/fphys.2015.00020. eCollection 2015.
10
White matter hyperintensity in ischemic stroke patients: it may regress over time.
J Stroke. 2015 Jan;17(1):60-6. doi: 10.5853/jos.2015.17.1.60. Epub 2015 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验