Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia.
Institut des Nanosciences de Paris, Sorbonne Université, CNRS, UMR7588, 75251, Paris, France.
Nat Commun. 2018 Jun 11;9(1):2277. doi: 10.1038/s41467-018-04582-1.
Vortices in quantum condensates exist owing to a macroscopic phase coherence. Here we show, both experimentally and theoretically, that a quantum vortex with a well-defined core can exist in a rather thick normal metal, proximized with a superconductor. Using scanning tunneling spectroscopy we reveal a proximity vortex lattice at the surface of 50 nm-thick Cu-layer deposited on Nb. We demonstrate that these vortices have regular round cores in the centers of which the proximity minigap vanishes. The cores are found to be significantly larger than the Abrikosov vortex cores in Nb, which is related to the effective coherence length in the proximity region. We develop a theoretical approach that provides a fully self-consistent picture of the evolution of the vortex with the distance from Cu/Nb interface, the interface impedance, applied magnetic field, and temperature. Our work opens a way for the accurate tuning of the superconducting properties of quantum hybrids.
由于宏观相位相干,量子凝聚体中存在涡旋。在这里,我们通过实验和理论都证明,在超导体覆盖的相当厚的正常金属中,可以存在具有明确定义核心的量子涡旋。我们使用扫描隧道显微镜揭示了在厚度为 50nm 的 Nb 上沉积的 Cu 层表面的近邻涡旋晶格。我们证明,这些涡旋在中心具有规则的圆形核心,其中近邻能隙消失。发现这些核心明显大于 Nb 中的 Abrikosov 涡旋核心,这与近邻区域中的有效相干长度有关。我们开发了一种理论方法,该方法提供了从 Cu/Nb 界面、界面阻抗、外加磁场和温度的距离上演化的涡旋的完全自洽图像。我们的工作为精确调整量子混合体的超导性质开辟了道路。