Tlili Sham, Gauquelin Estelle, Li Brigitte, Cardoso Olivier, Ladoux Benoît, Delanoë-Ayari Hélène, Graner François
Laboratoire Matière et Systèmes Complexes, Université Denis Diderot - Paris 7, CNRS UMR 7057, Condorcet building, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.
Mechanobiology Institute, Department of Biological Sciences, National University of Singapore, 5A Engineering Drive, 1, 117411 Singapore.
R Soc Open Sci. 2018 May 2;5(5):172421. doi: 10.1098/rsos.172421. eCollection 2018 May.
Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.
集体细胞迁移有助于胚胎发育、伤口愈合和肿瘤转移。细胞单层迁移实验有助于理解是什么决定了远离前沿的细胞的运动。抑制细胞增殖可限制细胞密度增加并防止阻塞;我们观察到长时间迁移,并在大长度尺度和时间尺度上量化速度分布的时空特征。速度波向后传播,其频率仅取决于移动前沿的细胞密度。无论与前沿的距离如何,细胞平均速度和波速都随细胞有效半径线性增加。抑制片状伪足会降低细胞速度,而波要么消失,要么频率降低。我们的模型结合了守恒定律、单层力学性质以及应变与极性之间的唯象耦合:前进的细胞拉动其跟随者,随后跟随者会极化。通过合理的参数值,该模型与我们的一些实验观察结果相符。总之,我们的实验和模型厘清了单层迁移中主动速度和增殖各自的贡献,解释了细胞如何在远离移动前沿的地方保持其极性,并突出了应变 - 极性耦合和密度在长程信息传播中的重要性。