Demory David, Combe Charlotte, Hartmann Philipp, Talec Amélie, Pruvost Eric, Hamouda Raouf, Souillé Fabien, Lamare Pierre-Olivier, Bristeau Marie-Odile, Sainte-Marie Jacques, Rabouille Sophie, Mairet Francis, Sciandra Antoine, Bernard Olivier
Sorbonne Université, UPMC Univ. Paris 06, UMR 7093, LOV, Observatoire Océanologique, 06230 Villefranche-sur-mer, France.
Université Côte d'Azur, BIOCORE, INRIA, BP93, 06902 Sophia-Antipolis Cedex, France.
R Soc Open Sci. 2018 May 30;5(5):180523. doi: 10.1098/rsos.180523. eCollection 2018 May.
Hydrodynamics in a high-rate production reactor for microalgae cultivation affects the light history perceived by cells. The interplay between cell movement and medium turbidity leads to a complex light pattern, whose forcing effects on photosynthesis and photoacclimation dynamics are non-trivial. Hydrodynamics of high density algal ponds mixed by a paddle wheel has been studied recently, although the focus has never been on describing its impact on photosynthetic growth efficiency. In this multidisciplinary downscaling study, we first reconstructed single cell trajectories in an open raceway using an original hydrodynamical model offering a powerful discretization of the Navier-Stokes equations tailored to systems with free surfaces. The trajectory of a particular cell was selected and the associated high-frequency light pattern was computed. This light pattern was then experimentally reproduced in an Arduino-driven computer controlled cultivation system with a low density culture. The effect on growth and pigment content was recorded for various frequencies of the light pattern, by setting different paddle wheel velocities. Results show that the frequency of this realistic signal plays a decisive role in the dynamics of photosynthesis, thus revealing an unexpected photosynthetic response compared to that recorded under the on/off signals usually used in the literature. Indeed, the light received by a single cell contains signals from low to high frequencies that nonlinearly interact with the photosynthesis process and differentially stimulate the various time scales associated with photoacclimation and energy dissipation. This study highlights the need for experiments with more realistic light stimuli to better understand microalgal growth at high cell densities. An experimental protocol is also proposed, with simple, yet more realistic, step functions for light fluctuations.
用于微藻培养的高速生产反应器中的流体动力学影响细胞所感知的光照历程。细胞运动与培养基浊度之间的相互作用导致了复杂的光照模式,其对光合作用和光适应动力学的强迫效应并非微不足道。尽管此前从未将重点放在描述其对光合生长效率的影响上,但最近已经对由桨轮混合的高密度藻池的流体动力学进行了研究。在这项多学科的尺度缩小研究中,我们首先使用一个原始的流体动力学模型在开放式跑道中重建单细胞轨迹,该模型对纳维-斯托克斯方程进行了强大的离散化处理,适用于具有自由表面的系统。选择了一个特定细胞的轨迹并计算了相关的高频光照模式。然后在一个由Arduino驱动的计算机控制的低密度培养系统中通过实验重现了这种光照模式。通过设置不同的桨轮速度,记录了光照模式的各种频率对生长和色素含量的影响。结果表明,这种实际信号的频率在光合作用动力学中起决定性作用,从而揭示了与文献中通常使用的开/关信号下记录的结果相比意想不到的光合响应。实际上,单个细胞接收到的光包含从低频到高频的信号,这些信号与光合作用过程非线性相互作用,并以不同方式刺激与光适应和能量耗散相关的各种时间尺度。这项研究强调了需要进行更实际光照刺激的实验,以更好地理解高细胞密度下微藻的生长。还提出了一个实验方案,具有简单但更实际的光照波动阶跃函数。