Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
Photosynth Res. 2013 Jul;115(2-3):139-51. doi: 10.1007/s11120-013-9846-x. Epub 2013 Jun 2.
It has long been suspected that photoprotective mechanisms in green algae are similar to those in seed plants. However, exceptions have recently surfaced among aquatic and marine green algae in several taxonomic classes. Green algae are highly diverse genetically, falling into 13 named classes, and they are diverse ecologically, with many lineages including members from freshwater, marine, and terrestrial habitats. Genetically similar species living in dramatically different environments are potentially a rich source of information about variations in photoprotective function. Using aquatic and desert-derived species from three classes of green algae, we examined the induction of photoprotection under high light, exploring the relationship between nonphotochemical quenching and the xanthophyll cycle. In liquid culture, behavior of aquatic Entransia fimbriata (Klebsormidiophyceae) generally matched patterns observed in seed plants. Nonphotochemical quenching was lowest after overnight dark adaptation, increased with light intensity, and the extent of nonphotochemical quenching correlated with the extent of deepoxidation of xanthophyll cycle pigments. In contrast, overnight dark adaptation did not minimize nonphotochemical quenching in the other species studied: desert Klebsormidium sp. (Klebsormidiophyceae), desert and aquatic Cylindrocystis sp. (Zygnematophyceae), and desert Stichococcus sp. (Trebouxiophyceae). Instead, exposure to low light reduced nonphotochemical quenching below dark-adapted levels. De-epoxidation of xanthophyll cycle pigments paralleled light-induced changes in nonphotochemical quenching for species within Klebsormidiophyceae and Trebouxiophyceae, but not Zygnematophyceae. Inhibition of violaxanthin-zeaxanthin conversion by dithiothreitol reduced high-light-associated nonphotochemical quenching in all species (Zygnematophyceae the least), indicating that zeaxanthin can contribute to photoprotection as in seed plants but to different extents depending on taxon or lineage.
长期以来,人们一直怀疑绿藻中的光保护机制与种子植物中的机制相似。然而,最近在几个分类群的水生和海洋绿藻中出现了例外情况。绿藻在遗传上高度多样化,分为 13 个命名类,在生态上也多样化,许多谱系包括来自淡水、海洋和陆地生境的成员。生活在截然不同环境中的遗传上相似的物种可能是关于光保护功能变化的丰富信息来源。我们使用来自绿藻三个类群的水生和沙漠衍生物种,研究了高光下光保护的诱导,探索了非光化学猝灭与叶黄素循环之间的关系。在液体培养中,水生 Entransia fimbriata(Klebsormidiophyceae)的行为通常与种子植物中观察到的模式相匹配。非光化学猝灭在过夜黑暗适应后最低,随光强度增加而增加,非光化学猝灭的程度与叶黄素循环色素的深度氧化程度相关。相比之下,过夜黑暗适应并不能使其他研究物种的非光化学猝灭最小化:沙漠 Klebsormidium sp.(Klebsormidiophyceae)、沙漠和水生 Cylindrocystis sp.(Zygnematophyceae)以及沙漠 Stichococcus sp.(Trebouxiophyceae)。相反,暴露于低光线下会使非光化学猝灭低于黑暗适应水平。叶黄素循环色素的去环氧化与 Klebsormidiophyceae 和 Trebouxiophyceae 物种的光诱导非光化学猝灭变化平行,但与 Zygnematophyceae 物种不同。二硫苏糖醇抑制 violaxanthin-zeaxanthin 转化可降低所有物种(Zygnematophyceae 受影响最小)高光相关的非光化学猝灭,表明玉米黄质可以像在种子植物中那样有助于光保护,但因分类群或谱系而异。