Campbell D J, Bouhnik J, Coezy E, Menard J, Corvol P
J Clin Invest. 1985 Jun;75(6):1880-93. doi: 10.1172/JCI111902.
To define the basis of the heterogeneity of angiotensinogen, we have characterized the immunoreactivity of high molecular weight (HMW) and low molecular weight (LMW) plasma angiotensinogen, the angiotensinogen precursor synthesized by cell-free translation, and angiotensinogen secreted by human hepatoma (Hep G2) cells. Angiotensinogen precursor synthesized by rabbit reticulocyte lysate primed with RNA prepared from liver or Hep G2 cells was compared with angiotensinogen secreted by Hep G2 cells by using immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). So as to assess the contribution of N-glycosylation of angiotensinogen, Hep G2 cells were incubated in the presence of tunicamycin. Glycosylation of secreted angiotensinogen was further characterized by using chromatography on concanavalin A-Sepharose, digestion with neuraminidase, and treatment with trifluoromethane sulfonic acid. In Sephadex G-200 column chromatography, HMW plasma angiotensinogen eluted just after the column void volume and was clearly separated from LMW angiotensinogen which eluted just before bovine serum albumin. Both HMW and LMW plasma angiotensinogen were shown to bind to monoclonal and polyclonal antibodies raised against pure LMW angiotensinogen. Only one angiotensinogen precursor (mol wt 50,000) was identified by cell-free translation which, after cleavage by renin, was reduced to mol wt 45,600. Angiotensinogen secreted by Hep G2 cells showed electrophoretic heterogeneity (mol wt 53,100-65,400). Tunicamycin-treated Hep G2 cells secreted five discrete forms of angiotensinogen, a predominant form of mol wt 46,200, with other forms (mol wt 46,800, 48,100, 49,200, and 49,600) representing 10% of secreted angiotensinogen. All five forms showed a similar reduction in molecular weight after cleavage by renin. The predominant 46,200-mol wt protein represented nonglycosylated angiotensinogen in that, after cleavage by renin, it had an electrophoretic mobility (mol wt 45,600) identical to the desangiotensin I-angiotensinogen resulting from renin cleavage of the angiotensinogen precursor. The other higher molecular weight forms of angiotensinogen secreted by tunicamycin-treated Hep G2 cells were shown to represent O-glycosylated angiotensinogen in that they were reduced to 46,200 mol wt by treatment with trifluoromethane sulfonic acid. Dexamethasone (10(-7) and 10(-6)M) stimulated angiotensinogen secretion by Hep G2 cells two- to fourfold, both in the absence and presence of tunicamycin. However, a small stimulatory effect of mestranol (10(-7) M) was evident only in the presence of tunicamycin. Neither dexamethasone nor mestranol influenced the electrophoretic pattern (SDS-PAGE) of angiotensinogen secreted by Hep G2 cells. However, when incubation media were chromatographed on Sephadex G-200 with subsequent immunoprecipitation of the column fractions, both dexamethasone and mestranol were shown to stimulate the secretion of HMW angiotensinogen (eluting just after the column void volume) which, on SDS-PAGE, migrated in a position identical to LMW angiotensinogen. From these studies, we conclude that all forms of human angiotensinogen are derived from a single precursor. The heterogeneity of secreted angiotensinogen represents differences in posttranslational processing of angiotensinogen. This processing includes both N- and O-glycosylation, and also the formation of HMW complexes (HMW angiotensinogen) through association either with other angiotensinogen molecules or with some other protein(s) whose secretion by hepatocytes is stimulated by glucocorticoids and estrogens.
为了确定血管紧张素原异质性的基础,我们对高分子量(HMW)和低分子量(LMW)血浆血管紧张素原、无细胞翻译合成的血管紧张素原前体以及人肝癌(Hep G2)细胞分泌的血管紧张素原的免疫反应性进行了表征。通过免疫沉淀和十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳(SDS - PAGE),将用从肝脏或Hep G2细胞制备的RNA引发的兔网织红细胞裂解物合成的血管紧张素原前体与Hep G2细胞分泌的血管紧张素原进行比较。为了评估血管紧张素原N - 糖基化的作用,将Hep G2细胞在衣霉素存在下孵育。通过伴刀豆球蛋白A - 琼脂糖柱层析、神经氨酸酶消化和三氟甲磺酸处理进一步表征分泌的血管紧张素原的糖基化。在Sephadex G - 200柱层析中,HMW血浆血管紧张素原在柱空隙体积之后洗脱,并且与恰好在牛血清白蛋白之前洗脱的LMW血管紧张素原明显分离。HMW和LMW血浆血管紧张素原均显示与针对纯LMW血管紧张素原产生的单克隆和多克隆抗体结合。通过无细胞翻译仅鉴定出一种血管紧张素原前体(分子量50,000),其经肾素切割后分子量降至45,600。Hep G2细胞分泌的血管紧张素原表现出电泳异质性(分子量53,100 - 65,400)。经衣霉素处理的Hep G2细胞分泌五种离散形式的血管紧张素原,一种主要形式的分子量为46,200,其他形式(分子量46,800、48,100、49,200和49,600)占分泌的血管紧张素原的10%。所有五种形式在经肾素切割后分子量均有类似程度的降低。主要的46,200分子量蛋白代表非糖基化的血管紧张素原,因为经肾素切割后,其电泳迁移率(分子量45,600)与血管紧张素原前体经肾素切割产生的脱血管紧张素I - 血管紧张素原相同。经衣霉素处理的Hep G2细胞分泌的其他较高分子量形式的血管紧张素原被证明代表O - 糖基化的血管紧张素原,因为用三氟甲磺酸处理后它们的分子量降至46,200。地塞米松(10^(-7)和10^(-6)M)在不存在和存在衣霉素的情况下均使Hep G2细胞的血管紧张素原分泌增加2至4倍。然而,炔雌醇甲醚(10^(-7)M)的小刺激作用仅在存在衣霉素时明显。地塞米松和炔雌醇甲醚均不影响Hep G2细胞分泌的血管紧张素原的电泳图谱(SDS - PAGE)。然而,当将孵育培养基在Sephadex G - 200上进行柱层析,随后对柱级分进行免疫沉淀时,地塞米松和炔雌醇甲醚均显示刺激HMW血管紧张素原(恰好在柱空隙体积之后洗脱)的分泌,其在SDS - PAGE上的迁移位置与LMW血管紧张素原相同。从这些研究中,我们得出结论,所有形式的人血管紧张素原均源自单一前体。分泌的血管紧张素原的异质性代表血管紧张素原翻译后加工的差异。这种加工包括N - 和O - 糖基化,以及通过与其他血管紧张素原分子或与肝细胞分泌受糖皮质激素和雌激素刺激的某些其他蛋白质结合形成HMW复合物(HMW血管紧张素原)。