Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany.
Departement Environmental Sciences, Zoology, Basel University, Switzerland.
FEBS J. 2018 Aug;285(15):2869-2887. doi: 10.1111/febs.14578. Epub 2018 Jun 20.
Oxidative stress is a major source of reactive carbonyl compounds that can damage cellular macromolecules, leading to so-called carbonyl stress. Aside from endogenously formed carbonyls, including highly reactive short-chain aldehydes and diketones, air pollutants derived from diesel exhaust like 9,10-phenanthrenequinone (PQ) can amplify oxidative stress by redox cycling, causing tissue damage. Carbonyl reductases (CRs), which are inducible in response to ROS, represent a fundamental enzymatic defense mechanism against oxidative stress. While commonly two carbonyl reductases (CBR1 and CBR3) are found in mammalian genomes, invertebrate model organisms like Drosophila melanogaster express no CR but a functional homolog to human CBR1, termed sniffer. The microcrustacean Daphnia is an ideal model organism to investigate the function of CRs because of its unique equipment with even four copies of the CR gene (CR1, CR2, CR3, CR4) in addition to one sniffer gene. Cloning and catalytic characterization of two carbonyl reductases CR1 and CR3 from D. magna and D. pulex arenata revealed that both proteins reductively metabolize aromatic dicarbonyls (e.g., menadione, PQ) and aliphatic α-diketones (e.g., 2,3-hexanedione), while sugar-derived aldehydes (methylglyoxal, glyoxal) and lipid peroxidation products such as acrolein and butanal were poor substrates, indicating no physiological function in the metabolism of short-chain aldehydes. Treatment of D. magna with redox cyclers like menadione and the pesticide paraquat led to an upregulation of CR1 and CR3 mRNA, suggesting a role in oxidative stress defense. Further studies are needed to investigate their potential to serve as novel biomarkers for oxidative stress in Daphnia.
氧化应激是活性羰基化合物的主要来源,这些化合物可以破坏细胞大分子,导致所谓的羰基应激。除了内源性形成的羰基化合物,包括高度反应性的短链醛和二酮外,柴油废气衍生的空气污染物,如 9,10-菲醌 (PQ),可以通过氧化还原循环放大氧化应激,导致组织损伤。羰基还原酶 (CRs) 是一种对 ROS 有诱导作用的基本酶防御机制,代表了一种对氧化应激的基本酶防御机制。虽然哺乳动物基因组中通常发现两种羰基还原酶 (CBR1 和 CBR3),但无脊椎动物模式生物如黑腹果蝇不表达 CR,但表达一种与人 CBR1 功能同源的蛋白,称为嗅探器。由于其独特的装备,甚至有四个 CR 基因(CR1、CR2、CR3、CR4),外加一个嗅探器基因,微甲壳类动物水蚤是研究 CR 功能的理想模型生物。从 D. magna 和 D. pulex arenata 克隆和催化表征两种羰基还原酶 CR1 和 CR3 表明,这两种蛋白质都可以还原代谢芳香二羰基化合物(如甲萘醌、PQ)和脂肪族 α-二酮(如 2,3-己二酮),而糖衍生的醛(甲基乙二醛、乙二醛)和脂质过氧化产物如丙烯醛和丁醛则是较差的底物,表明在短链醛的代谢中没有生理功能。用甲萘醌和杀虫剂百草枯等氧化还原循环剂处理 D. magna 会导致 CR1 和 CR3 mRNA 的上调,表明其在氧化应激防御中发挥作用。需要进一步研究它们作为水蚤氧化应激新型生物标志物的潜力。