Suppr超能文献

相似文献

1
High-throughput Screening in Larval Zebrafish Identifies Novel Potent Sedative-hypnotics.
Anesthesiology. 2018 Sep;129(3):459-476. doi: 10.1097/ALN.0000000000002281.
2
Drug-selective Anesthetic Insensitivity of Zebrafish Lacking γ-Aminobutyric Acid Type A Receptor β3 Subunits.
Anesthesiology. 2019 Dec;131(6):1276-1291. doi: 10.1097/ALN.0000000000002963.
3
Genomic and functional conservation of sedative-hypnotic targets in the zebrafish.
Pharmacogenet Genomics. 2007 Apr;17(4):237-53. doi: 10.1097/FPC.0b013e3280119d62.
4
Anesthetic Drug Discovery and Development: A Case Study of Novel Etomidate Analogs.
Methods Enzymol. 2018;603:153-169. doi: 10.1016/bs.mie.2018.01.026. Epub 2018 Mar 2.
5
Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs.
J Pharmacol Toxicol Methods. 2008 May-Jun;57(3):176-87. doi: 10.1016/j.vascn.2008.01.004. Epub 2008 Feb 9.
6
Discovery of a novel general anesthetic chemotype using high-throughput screening.
Anesthesiology. 2015 Feb;122(2):325-33. doi: 10.1097/ALN.0000000000000505.
7
Carboetomidate: a pyrrole analog of etomidate designed not to suppress adrenocortical function.
Anesthesiology. 2010 Mar;112(3):637-44. doi: 10.1097/ALN.0b013e3181cf40ed.
8
Anesthetic properties of 4-iodopropofol: implications for mechanisms of anesthesia.
Anesthesiology. 2001 Jun;94(6):1050-7. doi: 10.1097/00000542-200106000-00020.
9
γ-Aminobutyric Acid Type A Receptor Modulation by Etomidate Analogs.
Anesthesiology. 2016 Mar;124(3):651-63. doi: 10.1097/ALN.0000000000000992.

引用本文的文献

2
The Serotonergic Dorsal Raphe Promotes Emergence from Propofol Anesthesia in Zebrafish.
J Neurosci. 2025 Apr 9;45(15):e2125232025. doi: 10.1523/JNEUROSCI.2125-23.2025.
3
Behavioral Profiling in Zebrafish Identifies Insecticide-Related Compounds.
J Agric Food Chem. 2025 Feb 5;73(5):2805-2813. doi: 10.1021/acs.jafc.4c09342. Epub 2025 Jan 24.
5
Systematized Serendipity: Fishing Expeditions for Anesthetic Drugs and Targets.
Anesthesiology. 2024 Nov 1;141(5):997-1006. doi: 10.1097/ALN.0000000000005153.
7
Comparison of Behavioral Effects of GABAergic Low- and High-Efficacy Neuroactive Steroids in the Zebrafish Larvae Assay.
ACS Chem Neurosci. 2024 Mar 6;15(5):909-915. doi: 10.1021/acschemneuro.3c00836. Epub 2024 Feb 22.
8
Apoptotic mechanism of propofol-induced developmental toxicity in zebrafish embryos.
PLoS One. 2023 May 30;18(5):e0286391. doi: 10.1371/journal.pone.0286391. eCollection 2023.

本文引用的文献

1
The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review.
Exp Neurol. 2018 Jan;299(Pt A):157-171. doi: 10.1016/j.expneurol.2017.10.004. Epub 2017 Oct 5.
2
New Hypnotic Drug Development and Pharmacologic Considerations for Clinical Anesthesia.
Anesthesiol Clin. 2017 Jun;35(2):e95-e113. doi: 10.1016/j.anclin.2017.01.017. Epub 2017 Apr 14.
3
Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
Methods. 2017 May 15;121-122:77-85. doi: 10.1016/j.ymeth.2017.03.005. Epub 2017 Mar 12.
4
Development of a Robust Mammalian Cell-based Assay for Studying Recombinant α β δ GABA Receptor Subtypes.
Basic Clin Pharmacol Toxicol. 2017 Aug;121(2):119-129. doi: 10.1111/bcpt.12778. Epub 2017 May 25.
5
Ketamine Increases the Function of γ-Aminobutyric Acid Type A Receptors in Hippocampal and Cortical Neurons.
Anesthesiology. 2017 Apr;126(4):666-677. doi: 10.1097/ALN.0000000000001483.
8
9
A KNIME-Based Analysis of the Zebrafish Photomotor Response Clusters the Phenotypes of 14 Classes of Neuroactive Molecules.
J Biomol Screen. 2016 Jun;21(5):427-36. doi: 10.1177/1087057115618348. Epub 2015 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验