Suppr超能文献

通过双重惩罚回归模型识别疾病相关的拷贝数变异。

Identifying disease-associated copy number variations by a doubly penalized regression model.

作者信息

Cheng Yichen, Dai James Y, Wang Xiaoyu, Kooperberg Charles

机构信息

Institute for Insight, Georgia State University, Atlanta, Georgia, U.S.A.

Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, U.S.A.

出版信息

Biometrics. 2018 Dec;74(4):1341-1350. doi: 10.1111/biom.12920. Epub 2018 Jun 12.

Abstract

Copy number variation (CNV) of DNA plays an important role in the development of many diseases. However, due to the irregularity and sparsity of the CNVs, studying the association between CNVs and a disease outcome or a trait can be challenging. Up to now, not many methods have been proposed in the literature for this problem. Most of the current researchers reply on an ad hoc two-stage procedure by first identifying CNVs in each individual genome and then performing an association test using these identified CNVs. This potentially leads to information loss and as a result a lower power to identify disease associated CNVs. In this article, we describe a new method that combines the two steps into a single coherent model to identify the common CNV across patients that are associated with certain diseases. We use a double penalty model to capture CNVs' association with both the intensities and the disease trait. We validate its performance in simulated datasets and a data example on platinum resistance and CNV in ovarian cancer genome.

摘要

DNA的拷贝数变异(CNV)在许多疾病的发展中起着重要作用。然而,由于CNV的不规则性和稀疏性,研究CNV与疾病结局或性状之间的关联可能具有挑战性。到目前为止,文献中针对这个问题提出的方法并不多。当前大多数研究人员依赖于一种临时的两阶段程序,即首先在每个个体基因组中识别CNV,然后使用这些识别出的CNV进行关联测试。这可能会导致信息丢失,从而降低识别与疾病相关的CNV的能力。在本文中,我们描述了一种新方法,该方法将这两个步骤合并为一个连贯的模型,以识别与某些疾病相关的患者间的常见CNV。我们使用双重惩罚模型来捕捉CNV与强度和疾病性状的关联。我们在模拟数据集以及卵巢癌基因组中铂耐药性和CNV的数据实例中验证了其性能。

相似文献

8
Tissue-Specific eQTL in Zebrafish.斑马鱼中的组织特异性表达数量性状基因座
Methods Mol Biol. 2020;2082:239-249. doi: 10.1007/978-1-0716-0026-9_17.
9
Copy number variations and human genetic disease.拷贝数变异与人类遗传疾病。
Curr Opin Pediatr. 2014 Dec;26(6):646-52. doi: 10.1097/MOP.0000000000000142.

本文引用的文献

2
Prediction of chemo-response in serous ovarian cancer.浆液性卵巢癌化疗反应的预测
Mol Cancer. 2016 Oct 19;15(1):66. doi: 10.1186/s12943-016-0548-9.
3
The Role of Constitutional Copy Number Variants in Breast Cancer.体质性拷贝数变异在乳腺癌中的作用
Microarrays (Basel). 2015 Sep 8;4(3):407-23. doi: 10.3390/microarrays4030407.
5
A New Method for Detecting Associations with Rare Copy-Number Variants.一种检测与罕见拷贝数变异关联的新方法。
PLoS Genet. 2015 Oct 2;11(10):e1005403. doi: 10.1371/journal.pgen.1005403. eCollection 2015 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验