Programa de Doctorado en Ciencias (Física), División de Ciencias Exactas y Naturales, Universidad de Sonora, Blvd. Luis Encinas & Rosales, 83000, Hermosillo, Mexico.
Phys Chem Chem Phys. 2018 Jun 27;20(25):17071-17080. doi: 10.1039/c8cp00818c.
Transition and noble metal clusters have proven to be critical novel materials, potentially offering major advantages over conventional catalysts in a range of value-added catalytic processess such as carbon dioxide transformation to methanol. In this work, a systematic computational study of CO2 adsorption on gas-phase Cu4-xPtx (x = 0-4) clusters is performed. An exhaustive potential energy surface exploration is initially performed using our recent density functional theory basin-hopping global optimization implementation. Ground-state and low-lying energy isomers are identified for Cu4-xPtx clusters. Secondly, a CO2 molecule adsorption process is analyzed on the ground-state Cu4-xPtx configurations, as a function of cluster composition. Our results show that the gas-phase linear CO2 molecule is deformed upon adsorption, with its bend angle varying from about 132° to 139°. Cu4-xPtx cluster geometries remain unchanged after CO2 adsorption, with the exception of Cu3Pt1 and Pt4 clusters. For these particular cases, a structural conversion between the ground-state geometry and the corresponding first isomer configurations is found to be assisted by the CO2 adsorption. For all clusters, the energy barriers between the ground-state and first isomer structures are explored. Our calculated CO2 adsorption energies are found to be larger for Pt-rich clusters, exhibiting a volcano-type plot. The overall effect of a hybrid functional including dispersion forces is also discussed.
过渡金属和贵金属团簇已被证明是至关重要的新型材料,它们在一系列增值催化过程中,如二氧化碳转化为甲醇,可能比传统催化剂具有更大的优势。在这项工作中,我们对气相 Cu4-xPtx(x = 0-4)团簇上的 CO2 吸附进行了系统的计算研究。最初,我们使用最近的密度泛函理论 basin-hopping 全局优化实现,对势能面进行了详尽的探索。确定了 Cu4-xPtx 团簇的基态和低能异构体。其次,分析了 CO2 分子在基态 Cu4-xPtx 构型上的吸附过程,作为团簇组成的函数。我们的结果表明,气相线性 CO2 分子在吸附后发生变形,其弯曲角度从约 132°到 139°变化。CO2 吸附后,Cu4-xPtx 团簇的几何形状保持不变,除了 Cu3Pt1 和 Pt4 团簇。对于这些特殊情况,发现 CO2 吸附有助于从基态几何结构到相应的第一异构体构型的结构转换。对于所有的团簇,我们都探索了基态和第一异构体结构之间的能量势垒。我们发现富 Pt 团簇的 CO2 吸附能较大,呈火山型曲线。还讨论了包含色散力的杂化泛函的整体效果。