Department of Physics , Florida State University , Tallahassee , Florida 32306 , United States.
Department of Industrial and Manufacturing Engineering, College of Engineering , Florida A&M University-Florida State University (FAMU-FSU) , Tallahassee , Florida 32310 , United States.
Nano Lett. 2018 Jul 11;18(7):4386-4395. doi: 10.1021/acs.nanolett.8b01423. Epub 2018 Jun 19.
The interest in spin transport in nanoscopic semiconductor channels is driven by both the inevitable miniaturization of spintronics devices toward nanoscale and the rich spin-dependent physics the quantum confinement engenders. For such studies, the all-important issue of the ferromagnet/semiconductor (FM/SC) interface becomes even more critical at nanoscale. Here we elucidate the effects of the FM/SC interface on electrical spin injection and detection at nanoscale dimensions, utilizing a unique type of Si nanowires (NWs) with an inherent axial doping gradient. Two-terminal and nonlocal four-terminal lateral spin-valve measurements were performed using different combinations from a series of FM contacts positioned along the same NW. The data are analyzed with a general model of spin accumulation in a normal channel under electrical spin injection from a FM, which reveals a distinct correlation of decreasing spin-valve signal with increasing injector junction resistance. The observation is attributed to the diminishing contribution of the d-electrons in the FM to the injected current spin polarization with increasing Schottky barrier width. The results demonstrate that there is a window of interface parameters for optimal spin injection efficiency and current spin polarization, which provides important design guidelines for nanospintronic devices with quasi-one-dimensional semiconductor channels.
对纳米尺度半导体通道中自旋输运的研究兴趣,一方面源于自旋电子学器件向纳米尺度缩小的必然趋势,另一方面也源于量子限制所产生的丰富的自旋相关物理现象。对于此类研究,在纳米尺度上,铁磁体/半导体(FM/SC)界面这一至关重要的问题变得更加关键。在这里,我们利用具有固有轴向掺杂梯度的独特类型 Si 纳米线(NW)阐明了 FM/SC 界面对纳米尺度电自旋注入和检测的影响。使用沿同一 NW 定位的一系列 FM 接触中的不同组合进行了两端和非局域四端横向自旋阀测量。通过从 FM 向正常通道中电自旋注入的一般模型对数据进行了分析,该模型揭示了随着注入器结电阻的增加,自旋阀信号的明显相关性下降。这种观察归因于随着肖特基势垒宽度的增加,FM 中的 d 电子对注入电流自旋极化的贡献减小。研究结果表明,对于最优的自旋注入效率和电流自旋极化,存在一个界面参数窗口,这为具有准一维半导体通道的纳米自旋电子器件提供了重要的设计指导。