Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905.
Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905.
J Biol Chem. 2018 Aug 17;293(33):12894-12907. doi: 10.1074/jbc.RA118.002983. Epub 2018 Jun 13.
Epigenetic mechanisms control skeletal development and osteoblast differentiation. Pharmacological inhibition of the histone 3 Lys-27 (H3K27) methyltransferase enhancer of zeste homolog 2 (EZH2) in WT mice enhances osteogenesis and stimulates bone formation. However, conditional genetic loss of early in the mesenchymal lineage ( through excision via promoter-driven Cre) causes skeletal abnormalities due to patterning defects. Here, we addressed the key question of whether controls osteoblastogenesis at later developmental stages beyond patterning. We show that loss in committed pre-osteoblasts by Cre expression via the osterix/ promoter yields phenotypically normal mice. These Ezh2 conditional knock-out mice (Ezh2 cKO) have normal skull bones, clavicles, and long bones but exhibit increased bone marrow adiposity and reduced male body weight. Remarkably, loss results in a low trabecular bone phenotype in young mice as measured by micro-computed tomography and histomorphometry. Thus, affects bone formation stage-dependently. We further show that loss in bone marrow-derived mesenchymal cells suppresses osteogenic differentiation and impedes cell cycle progression as reflected by decreased metabolic activity, reduced cell numbers, and changes in cell cycle distribution and in expression of cell cycle markers. RNA-Seq analysis of cKO calvaria revealed that the cyclin-dependent kinase inhibitor is the most prominent cell cycle target of Hence, genetic loss of in mouse pre-osteoblasts inhibits osteogenesis in part by inducing cell cycle changes. Our results suggest that serves a bifunctional role during bone formation by suppressing osteogenic lineage commitment while simultaneously facilitating proliferative expansion of osteoprogenitor cells.
表观遗传机制控制骨骼发育和成骨细胞分化。在 WT 小鼠中,组蛋白 3 赖氨酸 27(H3K27)甲基转移酶增强子的锌指蛋白 2(EZH2)的药理学抑制增强了成骨作用并刺激了骨形成。然而,早期在间充质谱系中的条件遗传缺失(通过启动子驱动的 Cre 切除)会由于模式缺陷而导致骨骼异常。在这里,我们解决了一个关键问题,即在发育后期的成骨细胞生成中,是否存在对 的控制作用。我们表明,通过骨形态发生蛋白受体激活物/核心结合因子α1(osterix/)启动子表达 Cre 进行的早期成骨细胞的条件缺失产生表型正常的小鼠。这些 Ezh2 条件敲除小鼠(Ezh2 cKO)具有正常的颅骨、锁骨和长骨,但表现出增加的骨髓脂肪含量和降低的雄性体重。值得注意的是,通过微计算机断层扫描和组织形态计量学测量,年轻小鼠的 缺失导致低小梁骨表型。因此, 依赖于形成阶段影响骨形成。我们进一步表明,骨髓来源的间充质细胞中的 缺失抑制成骨分化,并阻碍细胞周期进程,表现为代谢活性降低、细胞数量减少以及细胞周期分布和细胞周期标志物表达的变化。对 cKO 颅骨的 RNA-Seq 分析表明,细胞周期蛋白依赖性激酶抑制剂 1B(p27kip1)是 的最显著的细胞周期靶标。因此,在小鼠前成骨细胞中遗传缺失 通过诱导细胞周期变化部分抑制成骨作用。我们的结果表明,在骨形成过程中, 发挥双重作用,通过抑制成骨细胞系的分化,同时促进成骨前体细胞的增殖扩张。