Suppr超能文献

嵌段共聚物纳米颗粒通过纳米级细菌清创去除耐多药革兰阳性菌的生物膜。

Block Copolymer Nanoparticles Remove Biofilms of Drug-Resistant Gram-Positive Bacteria by Nanoscale Bacterial Debridement.

机构信息

Centre for Antimicrobial Bioengineering, School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , 637459 Singapore.

Singapore Centre for Environmental Life Sciences Engineering (SCELSE) , Nanyang Technological University , 60 Nanyang Drive , SBS-01N-27, 637551 Singapore.

出版信息

Nano Lett. 2018 Jul 11;18(7):4180-4187. doi: 10.1021/acs.nanolett.8b01000. Epub 2018 Jun 26.

Abstract

Biofilms and the rapid evolution of multidrug resistance complicate the treatment of bacterial infections. Antibiofilm agents such as metallic-inorganic nanoparticles or peptides act by exerting antibacterial effects and, hence, do not combat biofilms of antibiotics-resistant strains. In this Letter, we show that the block copolymer DA95B5, dextran- block-poly((3-acrylamidopropyl) trimethylammonium chloride (AMPTMA)- co-butyl methacrylate (BMA)), effectively removes preformed biofilms of various clinically relevant multidrug-resistant Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE V583), and Enteroccocus faecalis (OG1RF). DA95B5 self-assembles into core-shell nanoparticles with a nonfouling dextran shell and a cationic core. These nanoparticles diffuse into biofilms and attach to bacteria but do not kill them; instead, they promote the gradual dispersal of biofilm bacteria, probably because the solubility of the bacteria-nanoparticle complex is enhanced by the nanoparticle dextran shell. DA95B5, when applied as a solution to a hydrogel pad dressing, shows excellent in vivo MRSA biofilm removal efficacy of 3.6 log reduction in a murine excisional wound model, which is significantly superior to that for vancomycin. Furthermore, DA95B5 has very low in vitro hemolysis and negligible in vivo acute toxicity. This new strategy for biofilm removal (nanoscale bacterial debridement) is orthogonal to conventional rapidly developing resistance traits in bacteria so that it is as effective toward resistant strains as it is toward sensitive strains and may have widespread applications.

摘要

生物膜的形成和多重耐药性的快速进化使细菌感染的治疗变得复杂。抗生物膜剂,如金属-无机纳米粒子或肽,通过发挥抗菌作用来起作用,因此不能对抗抗生素耐药菌株的生物膜。在这封信中,我们表明嵌段共聚物 DA95B5(葡聚糖-嵌段-聚(3-丙烯酰胺丙基)三甲基氯化铵(AMPTMA)-共- 甲基丙烯酸丁酯(BMA))可有效去除各种临床相关的多重耐药性革兰氏阳性菌(包括耐甲氧西林金黄色葡萄球菌(MRSA)、万古霉素耐药肠球菌(VRE V583)和粪肠球菌(OG1RF))形成的预成生物膜。DA95B5 自组装成具有非缠结葡聚糖壳和阳离子核的核壳纳米粒子。这些纳米粒子扩散到生物膜中并附着在细菌上,但不会杀死它们;相反,它们促进生物膜细菌的逐渐分散,这可能是因为纳米粒子葡聚糖壳增强了细菌-纳米粒子复合物的溶解度。当作为溶液施加到水凝胶垫敷料上时,DA95B5 在鼠切除伤口模型中显示出优异的体内 MRSA 生物膜去除功效,可降低 3.6 对数减少,明显优于万古霉素。此外,DA95B5 的体外溶血率非常低,体内急性毒性可忽略不计。这种新的生物膜去除策略(纳米级细菌清创)与细菌中快速发展的耐药性特征正交,因此对耐药菌株与敏感菌株一样有效,并且可能具有广泛的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验