文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

脉冲电磁场暴露对纳米 TiO2 表面培养的人骨髓间充质干细胞成骨诱导的影响。

The effect of pulsed electromagnetic field exposure on osteoinduction of human mesenchymal stem cells cultured on nano-TiO2 surfaces.

机构信息

Department of Molecular Medicine (DMM), Centre for Health Technologies (C.H.T.), INSTM Unit, University of Pavia, Pavia, Italy.

Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy.

出版信息

PLoS One. 2018 Jun 14;13(6):e0199046. doi: 10.1371/journal.pone.0199046. eCollection 2018.


DOI:10.1371/journal.pone.0199046
PMID:29902240
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6002089/
Abstract

Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) are considered a great promise in the repair and regeneration of bone. Considerable efforts have been oriented towards uncovering the best strategy to promote stem cells osteogenic differentiation. In previous studies, hBM-MSCs exposed to physical stimuli such as pulsed electromagnetic fields (PEMFs) or directly seeded on nanostructured titanium surfaces (TiO2) were shown to improve their differentiation to osteoblasts in osteogenic condition. In the present study, the effect of a daily PEMF-exposure on osteogenic differentiation of hBM-MSCs seeded onto nanostructured TiO2 (with clusters under 100 nm of dimension) was investigated. TiO2-seeded cells were exposed to PEMF (magnetic field intensity: 2 mT; intensity of induced electric field: 5 mV; frequency: 75 Hz) and examined in terms of cell physiology modifications and osteogenic differentiation. Results showed that PEMF exposure affected TiO2-seeded cells osteogenesis by interfering with selective calcium-related osteogenic pathways, and greatly enhanced hBM-MSCs osteogenic features such as the expression of early/late osteogenic genes and protein production (e.g., ALP, COL-I, osteocalcin and osteopontin) and ALP activity. Finally, PEMF-treated cells resulted to secrete into conditioned media higher amounts of BMP-2, DCN and COL-I than untreated cell cultures. These findings confirm once more the osteoinductive potential of PEMF, suggesting that its combination with TiO2 nanostructured surface might be a great option in bone tissue engineering applications.

摘要

人骨髓间充质干细胞(hBM-MSCs)被认为在骨修复和再生方面具有巨大的潜力。人们已经做出了相当大的努力来揭示促进干细胞成骨分化的最佳策略。在以前的研究中,已经证明 hBM-MSCs 暴露于物理刺激(如脉冲电磁场(PEMF))或直接接种在纳米结构钛表面(TiO2)上,可以改善其在成骨条件下向成骨细胞的分化。在本研究中,研究了每天暴露于 PEMF 对接种在纳米结构 TiO2(尺寸小于 100nm 的簇)上的 hBM-MSCs 成骨分化的影响。将接种有 TiO2 的细胞暴露于 PEMF(磁场强度:2 mT;感应电场强度:5 mV;频率:75 Hz),并从细胞生理学改变和成骨分化方面进行了检查。结果表明,PEMF 暴露通过干扰选择性钙相关成骨途径来影响 TiO2 接种细胞的成骨作用,并极大地增强了 hBM-MSCs 的成骨特征,如早期/晚期成骨基因和蛋白质的表达(例如,碱性磷酸酶(ALP)、COL-I、骨钙素和骨桥蛋白)和 ALP 活性。最后,与未经处理的细胞培养物相比,PEMF 处理的细胞在条件培养基中分泌出更多的 BMP-2、DCN 和 COL-I。这些发现再次证实了 PEMF 的成骨潜力,表明其与 TiO2 纳米结构表面的结合可能是骨组织工程应用中的一个很好的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce7/6002089/dc963dbf384b/pone.0199046.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce7/6002089/cf659a7e87f0/pone.0199046.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce7/6002089/13afc9d84e55/pone.0199046.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce7/6002089/26c8ca2a51bb/pone.0199046.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce7/6002089/7403bdbfe432/pone.0199046.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce7/6002089/025eb900ced9/pone.0199046.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce7/6002089/dc963dbf384b/pone.0199046.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce7/6002089/cf659a7e87f0/pone.0199046.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce7/6002089/13afc9d84e55/pone.0199046.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce7/6002089/26c8ca2a51bb/pone.0199046.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce7/6002089/7403bdbfe432/pone.0199046.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce7/6002089/025eb900ced9/pone.0199046.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce7/6002089/dc963dbf384b/pone.0199046.g006.jpg

相似文献

[1]
The effect of pulsed electromagnetic field exposure on osteoinduction of human mesenchymal stem cells cultured on nano-TiO2 surfaces.

PLoS One. 2018-6-14

[2]
Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field.

J Cell Physiol. 2018-2

[3]
Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells.

J Orthop Res. 2008-9

[4]
Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells.

Bioelectromagnetics. 2014-9

[5]
Bone Morphogenetic Protein-2 Signaling in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Induced by Pulsed Electromagnetic Fields.

Int J Mol Sci. 2020-3-19

[6]
Electromagnetic fields and nanomagnetic particles increase the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

Int J Mol Med. 2015-1

[7]
Synergistic effects of polyaniline and pulsed electromagnetic field to stem cells osteogenic differentiation on polyvinylidene fluoride scaffold.

Artif Cells Nanomed Biotechnol. 2019-12

[8]
Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation.

J Orthop Res. 2009-9

[9]
Co-Culture with Human Osteoblasts and Exposure to Extremely Low Frequency Pulsed Electromagnetic Fields Improve Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells.

Int J Mol Sci. 2018-3-27

[10]
Notch pathway is active during osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields.

J Tissue Eng Regen Med. 2017-7-28

引用本文的文献

[1]
Insights into bone and cartilage responses to pulsed electromagnetic field stimulation: a review with quantitative comparisons.

Front Bioeng Biotechnol. 2025-7-10

[2]
The Future of Bone Repair: Emerging Technologies and Biomaterials in Bone Regeneration.

Int J Mol Sci. 2024-11-27

[3]
Role of Pulsed Electromagnetic Field on Alveolar Bone Remodeling during Orthodontic Retention Phase in Rat Models.

Dent J (Basel). 2024-9-9

[4]
Energizing Healing with Electromagnetic Field Therapy in Musculoskeletal Disorders.

J Orthop Sports Med. 2024

[5]
Application of magnetism in tissue regeneration: recent progress and future prospects.

Regen Biomater. 2024-5-7

[6]
Human Ovarian Follicular Fluid Mesenchymal Stem Cells Express Osteogenic Markers When Cultured on Bioglass 58S-Coated Titanium Scaffolds.

Materials (Basel). 2023-5-11

[7]
Harnessing electromagnetic fields to assist bone tissue engineering.

Stem Cell Res Ther. 2023-1-11

[8]
Biophysical therapy using the pulsating electromagnetic field as adjunctive therapy for implant osseointegration - A review.

Natl J Maxillofac Surg. 2022-8

[9]
Biomaterials to enhance stem cell transplantation.

Cell Stem Cell. 2022-5-5

[10]
Altered BMP2/4 Signaling in Stem Cells and Their Niche: Different Cancers but Similar Mechanisms, the Example of Myeloid Leukemia and Breast Cancer.

Front Cell Dev Biol. 2022-1-3

本文引用的文献

[1]
Influence of the nanofiber chemistry and orientation of biodegradable poly(butylene succinate)-based scaffolds on osteoblast differentiation for bone tissue regeneration.

Nanoscale. 2018-5-10

[2]
The Role of Matrix Composition in the Mechanical Behavior of Bone.

Curr Osteoporos Rep. 2018-6

[3]
Biomolecular regulation, composition and nanoarchitecture of bone mineral.

Sci Rep. 2018-1-19

[4]
A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering.

Colloids Surf B Biointerfaces. 2017-9-5

[5]
Biophysical characterization of nanostructured TiO as a good substrate for hBM-MSC adhesion, growth and differentiation.

Exp Cell Res. 2017-9-15

[6]
Notch pathway is active during osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields.

J Tissue Eng Regen Med. 2017-7-28

[7]
Nanostructured TiO₂ Surfaces Promote Human Bone Marrow Mesenchymal Stem Cells Differentiation to Osteoblasts.

Nanomaterials (Basel). 2016-6-24

[8]
Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering.

Clin Sci (Lond). 2017-4-25

[9]
Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders.

J Orthop Surg Res. 2016-12-16

[10]
Effects of BMP9 and pulsed electromagnetic fields on the proliferation and osteogenic differentiation of human periodontal ligament stem cells.

Bioelectromagnetics. 2017-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索