Suppr超能文献

Changes of intestinal alkaline phosphatase produced by cholecalciferol or 1,25-dihydroxyvitamin D3 in vitamin D-deficient chicks.

作者信息

Moreno J, Cortes C S, Asteggiano C A, Pereira R, Tolosa N, Cañas F M, Blanco A

出版信息

Arch Biochem Biophys. 1985 Jul;240(1):201-6. doi: 10.1016/0003-9861(85)90024-4.

Abstract

Treatment with cholecalciferol or 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) increases activity and changes electrophoretic mobility of alkaline phosphatase (alkPase) from duodenal brush border of vitamin D-deprived chicks. Three of the four molecular forms of the enzyme show reduced velocity of migration 9 h after 1,25(OH)2D3 or 24 h after vitamin D3. This change is reversed about 48 h later, when mobility of those bands is higher than that of controls. Incubation of enzyme preparations with exogenous neuraminidase produces the same electrophoretic modifications observed during the early stage, indicating that they are due to desialylation. Cholecalciferol or 1,25(OH)2D3 increase sialidase activity of duodenal brush border. This increment precedes that of alkPase and could account for the initial desialylation and moderate rise of alkPase. Cycloheximide markedly reduces alkPase in rachitic chicks and blocks the increase of the enzyme activity produced by vitamin D3, but does not modify the rise of sialidase or the reduction of alkPase electrophoretic mobility. The bimodal response of alkPase to 1,25(OH)2D3 or cholecalciferol comprises two different mechanisms: during a first stage, epigenetic modifications of preexisting enzyme can be triggered by the increased Ca2+ levels; in a second phase, there is activation of enzyme synthesis.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验