Suppr超能文献

通过SHAPE数据特征自动识别RNA结构基序

Automated Recognition of RNA Structure Motifs by Their SHAPE Data Signatures.

作者信息

Radecki Pierce, Ledda Mirko, Aviran Sharon

机构信息

Biomedical Engineering Department and Genome Center, University of California Davis, Davis, CA 95616, USA.

出版信息

Genes (Basel). 2018 Jun 14;9(6):300. doi: 10.3390/genes9060300.

Abstract

High-throughput structure profiling (SP) experiments that provide information at nucleotide resolution are revolutionizing our ability to study RNA structures. Of particular interest are RNA elements whose underlying structures are necessary for their biological functions. We previously introduced , an algorithm for rapidly mining SP data for patterns characteristic of such motifs. This work provided a proof-of-concept for the detection of motifs and the capability of distinguishing structures displaying pronounced conformational changes. Here, we describe several improvements and automation routines to . We then consider more elaborate biological situations starting with the comparison or integration of results from searches for distinct motifs and across datasets. To facilitate such analyses, we characterize ’s outputs and describe a normalization framework that regularizes results. We then demonstrate that our algorithm successfully discerns between highly similar structural variants of the human immunodeficiency virus type 1 (HIV-1) Rev response element (RRE) and readily identifies its exact location in whole-genome structure profiles of HIV-1. This work highlights the breadth of information that can be gleaned from SP data and broadens the utility of data-driven methods as tools for the detection of novel RNA elements.

摘要

能在核苷酸分辨率下提供信息的高通量结构剖析(SP)实验正在彻底改变我们研究RNA结构的能力。特别令人感兴趣的是那些其基础结构对其生物学功能至关重要的RNA元件。我们之前介绍了一种算法,用于快速挖掘SP数据以寻找此类基序的特征模式。这项工作为基序检测以及区分显示出明显构象变化的结构的能力提供了概念验证。在此,我们描述了对该算法的若干改进和自动化程序。然后,我们从比较或整合针对不同基序的搜索结果以及跨数据集的结果开始,考虑更复杂的生物学情况。为便于此类分析,我们对该算法的输出进行了特征描述,并描述了一个使结果规范化的归一化框架。然后,我们证明我们的算法成功地区分了人类免疫缺陷病毒1型(HIV - 1)Rev反应元件(RRE)的高度相似的结构变体,并能在HIV - 1的全基因组结构图谱中轻松识别其确切位置。这项工作突出了可从SP数据中收集到的信息广度,并拓宽了数据驱动方法作为检测新型RNA元件工具的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f5/6027059/91e9b737dc3e/genes-09-00300-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验