Opt Lett. 2018 Jun 15;43(12):2827-2830. doi: 10.1364/OL.43.002827.
In this Letter, the pulse generation and pulse train stability of a tapered two-section InAs/InGaAs quantum dot laser emitting at 1250 nm are numerically predicted and experimentally verified. Simulations based on a multi-section delayed differential equation model are used to properly design a laser source able to generate stable mode-locked pulses at a 15 GHz repetition rate with picosecond width and output power larger than 1 W, and to identify the device stability regions depending on the bias conditions. Possible instabilities are associated with the existence of a leading or trailing edge net gain window outside the optical pulse. Experimentally, we confirm the existence of different stability regions where instabilities manifest in broadband or multi-periodic pulse train amplitude modulations. Our results confirm the correctness to the design and may be helpful in achieving high-power pulses while avoiding detrimental pulse train instabilities, both being important for time-critical applications.
在这封信件中,我们对 1250nm 激射的锥形两段式 InAs/InGaAs 量子点激光器的脉冲产生和脉冲列稳定性进行了数值预测和实验验证。基于多段延迟微分方程模型的模拟,用于适当设计激光源,使其能够在 15GHz 的重复率下产生具有皮秒宽度、大于 1W 的输出功率的稳定锁模脉冲,并根据偏置条件确定器件的稳定区域。可能的不稳定性与光学脉冲外存在的净增益窗口的前导或后导边缘有关。实验上,我们证实了存在不同的稳定区域,其中不稳定性表现为宽带或多周期脉冲列幅度调制。我们的结果证实了设计的正确性,并且可能有助于在避免有害的脉冲列不稳定性的同时实现高功率脉冲,这对于时间关键型应用都很重要。