Opt Lett. 2018 Jun 15;43(12):2917-2920. doi: 10.1364/OL.43.002917.
Lithium niobate (LN) is the workhorse for modern optoelectronics industry and nonlinear optics. High quality (Q) factor LN microresonators are promising candidates for applications in optical communications, quantum photonics, and sensing. However, the phase-matching requirement of traditional evanescent coupling methods poses significant challenges to achieve high coupling efficiencies of the pump and signal light simultaneously, ultimately limiting the practical usefulness of these high Q factor LN resonators. Here, for the first time, to the best of our knowledge, we demonstrate deformed chaotic LN microcavities that feature directional emission patterns and high Q factors simultaneously. The chaotic LN microdisks are created using conventional semiconductor fabrication processes, with measured Q factors exceeding 10 in the telecommunication band. We show that our devices can be free-space-coupled with high efficiency by leveraging directional emission from the asymmetric cavity. Using this broadband approach, we demonstrate a 58-fold enhancement of free-space collection efficiency of a second harmonic generation signal, compared with a circular microdisk.
铌酸锂(LN)是现代光电子学和非线性光学的主力材料。高质量(Q)因子的 LN 微谐振器是应用于光通信、量子光子学和传感的有前途的候选者。然而,传统消逝场耦合方法的相位匹配要求对同时实现高泵浦光和信号光的高效率耦合提出了重大挑战,最终限制了这些高 Q 因子 LN 谐振器的实际应用。在这里,据我们所知,我们首次展示了同时具有定向发射模式和高 Q 因子的变形混沌 LN 微腔。混沌 LN 微盘是使用传统半导体制造工艺制作的,在电信波段的测量 Q 因子超过 10。我们表明,通过利用非对称腔的定向发射,我们的器件可以通过自由空间耦合以高效率实现。使用这种宽带方法,与圆形微盘相比,我们将二次谐波产生信号的自由空间收集效率提高了 58 倍。