Yuanpei College, Peking University, Beijing 100871, China.
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
Phys Rev E. 2018 May;97(5-1):052136. doi: 10.1103/PhysRevE.97.052136.
We extend the well-known static duality [M. Girardeau, J. Math. Phys. 1, 516 (1960)JMAPAQ0022-248810.1063/1.1703687; T. Cheon and T. Shigehara, Phys. Rev. Lett. 82, 2536 (1999)PRLTAO0031-900710.1103/PhysRevLett.82.2536] between one-dimensional (1D) bosons and 1D fermions to the dynamical version. By utilizing this dynamical duality, we find the duality of nonequilibrium work distributions between interacting 1D bosonic (Lieb-Liniger model) and 1D fermionic (Cheon-Shigehara model) systems with dual contact interactions. As a special case, the work distribution of the Tonks-Girardeau gas is identical to that of 1D noninteracting fermionic system even though their momentum distributions are significantly different. In the classical limit, the work distributions of Lieb-Liniger models (Cheon-Shigehara models) with arbitrary coupling strength converge to that of the 1D noninteracting distinguishable particles, although their elementary excitations (quasiparticles) obey different statistics, e.g., the Bose-Einstein, the Fermi-Dirac, and the fractional statistics. We also present numerical results of the work distributions of Lieb-Liniger model with various coupling strengths, which demonstrate the convergence of work distributions in the classical limit.
我们将著名的一维(1D)玻色子和费米子之间的静态对偶性[M. Girardeau, J. Math. Phys. 1, 516 (1960)JMAPAQ0022-248810.1063/1.1703687; T. Cheon and T. Shigehara, Phys. Rev. Lett. 82, 2536 (1999)PRLTAO0031-900710.1103/PhysRevLett.82.2536]扩展到动态版本。通过利用这种动态对偶性,我们发现了相互作用的 1D 玻色子(Lieb-Liniger 模型)和 1D 费米子(Cheon-Shigehara 模型)系统与对偶接触相互作用之间非平衡功分布的对偶性。作为一个特例,即使它们的动量分布有很大的不同,Tonks-Girardeau 气体的功分布与 1D 非相互作用费米子系统的功分布是相同的。在经典极限下,任意耦合强度的 Lieb-Liniger 模型(Cheon-Shigehara 模型)的功分布收敛于 1D 非相互作用可区分粒子的功分布,尽管它们的基本激发(准粒子)遵循不同的统计规律,例如玻色-爱因斯坦、费米-狄拉克和分数统计。我们还给出了各种耦合强度下 Lieb-Liniger 模型的功分布的数值结果,这些结果表明了在经典极限下功分布的收敛性。