Suppr超能文献

用于所有 Knudsen 数流动的离散统一气体动力学格式。III. 麦克斯韦分子的二元气体混合物。

Discrete unified gas kinetic scheme for all Knudsen number flows. III. Binary gas mixtures of Maxwell molecules.

机构信息

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Phys Rev E. 2018 May;97(5-1):053306. doi: 10.1103/PhysRevE.97.053306.

Abstract

Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules based on the Andries-Aoki-Perthame kinetic model [P. Andries et al., J. Stat. Phys. 106, 993 (2002)JSTPBS0022-471510.1023/A:1014033703134. A particular feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction. Furthermore, the implicit treatment of the collision term enables the time step to be free from the restriction of the relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to determine the interaction parameters appearing in the equilibrium distribution function, which can be obtained analytically for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure problem under different Mach numbers and molar concentrations, the channel flow driven by a small gradient of pressure, temperature, or concentration, the plane Couette flow, and the shear driven cavity flow under different mass ratios and molar concentrations. The results are compared with those from other reliable numerical methods. The results show that the proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.

摘要

最近,基于 Boltzmann 模型方程,开发了一种用于所有流动状态下气体流动的离散统一气体动力学方案(DUGKS)。原始的 DUGKS 是专为单一气体流动设计的。在这项工作中,我们基于 Andries-Aoki-Perthame 动力学模型将 DUGKS 扩展到 Maxwell 分子二元气体混合物的流动中[P. Andries 等人,J. Stat. Phys. 106, 993 (2002)JSTPBS0022-471510.1023/A:1014033703134。该方法的一个特点是,每个单元界面的通量是根据动力学方程本身的特征解来评估的;因此,与直接重建相比,数值耗散较低。此外,对碰撞项的隐式处理使得时间步长不受弛豫时间的限制。与单一流体的 DUGKS 不同,必须求解一个非线性系统来确定出现在平衡分布函数中的相互作用参数,对于 Maxwell 分子,这些参数可以通过解析方法获得。进行了多项测试来验证该方案,包括不同马赫数和摩尔浓度下的激波结构问题、由压力、温度或浓度小梯度驱动的通道流动、平面 Couette 流动以及不同质量比和摩尔浓度下的剪切驱动腔流。结果与其他可靠的数值方法进行了比较。结果表明,所提出的方案是所有流动状态下二元气体混合物的一种有效可靠的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验