Suppr超能文献

WzxC 特异性缺失变体表明,在 MOP 家族翻转酶中,底物识别与转运体的开启相偶联。

Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP-family flippases.

机构信息

Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.

Department of Microbiology and Immunology, National University of Singapore, Singapore.

出版信息

Mol Microbiol. 2018 Sep;109(5):633-641. doi: 10.1111/mmi.14002. Epub 2018 Sep 15.

Abstract

Bacteria produce a variety of surface-exposed polysaccharides important for cell integrity, biofilm formation and evasion of the host immune response. Synthesis of these polymers often involves the assembly of monomer oligosaccharide units on the lipid carrier undecaprenyl-phosphate at the inner face of the cytoplasmic membrane. For many polymers, including cell wall peptidoglycan, the lipid-linked precursors must be transported across the membrane by flippases to facilitate polymerization at the membrane surface. Flippase activity for this class of polysaccharides is most often attributed to MOP (Multidrug/Oligosaccharidyl-lipid/Polysaccharide) family proteins. Little is known about how this ubiquitous class of transporters identifies and translocates its cognate precursor over the many different types of lipid-linked oligosaccharides produced by a given bacterial cell. To investigate the specificity determinants of MOP proteins, we selected for variants of the WzxC flippase involved in Escherichia coli capsule (colanic acid) synthesis that can substitute for the essential MurJ MOP-family protein and promote transport of cell wall peptidoglycan precursors. Variants with substitutions predicted to destabilize the inward-open conformation of WzxC lost substrate specificity and supported both capsule and peptidoglycan synthesis. Our results thus suggest that specific substrate recognition by a MOP transporter normally destabilizes the inward-open state, promoting transition to the outward-open conformation and concomitant substrate translocation. Furthermore, the ability of WzxC variants to suppress MurJ inactivation provides strong support for the designation of MurJ as the flippase for peptidoglycan precursors, the identity of which has been controversial.

摘要

细菌产生多种表面暴露的多糖,这些多糖对于细胞完整性、生物膜形成和逃避宿主免疫反应至关重要。这些聚合物的合成通常涉及在细胞质膜内表面的脂质载体十一碳烯基磷酸上组装单体寡糖单位。对于许多聚合物,包括细胞壁肽聚糖,脂质连接的前体必须通过翻转酶跨膜运输,以促进在膜表面聚合。此类多糖的翻转酶活性通常归因于 MOP(多药/寡糖基-脂质/多糖)家族蛋白。对于这种普遍存在的转运蛋白如何识别和转运其同源前体跨越给定细菌细胞产生的许多不同类型的脂质连接寡糖,知之甚少。为了研究 MOP 蛋白的特异性决定因素,我们选择了参与大肠杆菌荚膜(甘露聚糖酸)合成的 WzxC 翻转酶的变体,该变体可以替代必需的 MurJ MOP 家族蛋白,并促进细胞壁肽聚糖前体的运输。预测会使 WzxC 内向开放构象不稳定的变体失去了底物特异性,并支持荚膜和肽聚糖的合成。因此,我们的结果表明,MOP 转运蛋白的特定底物识别通常会使内向开放状态不稳定,从而促进向外向开放构象的转变和伴随的底物转运。此外,WzxC 变体能够抑制 MurJ 失活,这为 MurJ 作为肽聚糖前体的翻转酶提供了强有力的支持,其身份一直存在争议。

相似文献

2
Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis.
Science. 2014 Jul 11;345(6193):220-2. doi: 10.1126/science.1254522.
3
MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6437-42. doi: 10.1073/pnas.1504967112. Epub 2015 Apr 27.
5
Detection of Transport Intermediates in the Peptidoglycan Flippase MurJ Identifies Residues Essential for Conformational Cycling.
J Am Chem Soc. 2020 Mar 25;142(12):5482-5486. doi: 10.1021/jacs.9b12185. Epub 2020 Mar 11.
6
The bacterial lipid II flippase MurJ functions by an alternating-access mechanism.
J Biol Chem. 2019 Jan 18;294(3):981-990. doi: 10.1074/jbc.RA118.006099. Epub 2018 Nov 27.
7
Structure and Mechanism of the Lipid Flippase MurJ.
Annu Rev Biochem. 2022 Jun 21;91:705-729. doi: 10.1146/annurev-biochem-040320-105145. Epub 2022 Mar 23.
8
Charge requirements of lipid II flippase activity in Escherichia coli.
J Bacteriol. 2014 Dec;196(23):4111-9. doi: 10.1128/JB.02172-14. Epub 2014 Sep 15.
10
Visualizing conformation transitions of the Lipid II flippase MurJ.
Nat Commun. 2019 Apr 15;10(1):1736. doi: 10.1038/s41467-019-09658-0.

引用本文的文献

3
4
Structure of WzxE the lipid III flippase for Enterobacterial Common Antigen polysaccharide.
Open Biol. 2025 Jan;15(1):240310. doi: 10.1098/rsob.240310. Epub 2025 Jan 8.
5
Rewiring the pneumococcal capsule pathway for investigating glycosyltransferase specificity and genetic glycoengineering.
Sci Adv. 2023 Sep 8;9(36):eadi8157. doi: 10.1126/sciadv.adi8157. Epub 2023 Sep 6.
6
Structure and Mechanism of the Lipid Flippase MurJ.
Annu Rev Biochem. 2022 Jun 21;91:705-729. doi: 10.1146/annurev-biochem-040320-105145. Epub 2022 Mar 23.
7
The Bacterial Cell Wall: From Lipid II Flipping to Polymerization.
Chem Rev. 2022 May 11;122(9):8884-8910. doi: 10.1021/acs.chemrev.1c00773. Epub 2022 Mar 11.
8
Capsules and Extracellular Polysaccharides in Escherichia coli and Salmonella.
EcoSal Plus. 2021 Dec 15;9(2):eESP00332020. doi: 10.1128/ecosalplus.ESP-0033-2020. Epub 2021 Dec 1.
10
Lipopolysaccharide O-antigens-bacterial glycans made to measure.
J Biol Chem. 2020 Jul 31;295(31):10593-10609. doi: 10.1074/jbc.REV120.009402. Epub 2020 May 18.

本文引用的文献

1
Structure and mutagenic analysis of the lipid II flippase MurJ from .
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6709-6714. doi: 10.1073/pnas.1802192115. Epub 2018 Jun 11.
3
Crystal structure of the MOP flippase MurJ in an inward-facing conformation.
Nat Struct Mol Biol. 2017 Feb;24(2):171-176. doi: 10.1038/nsmb.3346. Epub 2016 Dec 26.
5
Lipid Flippases for Bacterial Peptidoglycan Biosynthesis.
Lipid Insights. 2016 Jan 13;8(Suppl 1):21-31. doi: 10.4137/LPI.S31783. eCollection 2015.
6
Substrate-induced unlocking of the inner gate determines the catalytic efficiency of a neurotransmitter:sodium symporter.
J Biol Chem. 2015 Oct 30;290(44):26725-38. doi: 10.1074/jbc.M115.677658. Epub 2015 Sep 11.
7
Inefficient translocation of a truncated O unit by a Salmonella Wzx affects both O-antigen production and cell growth.
FEMS Microbiol Lett. 2015 May;362(9). doi: 10.1093/femsle/fnv053. Epub 2015 Apr 2.
8
Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway.
Can J Microbiol. 2014 Nov;60(11):697-716. doi: 10.1139/cjm-2014-0595. Epub 2014 Sep 16.
9
Sequence co-evolution gives 3D contacts and structures of protein complexes.
Elife. 2014 Sep 25;3:e03430. doi: 10.7554/eLife.03430.
10
Comparative Protein Structure Modeling Using MODELLER.
Curr Protoc Bioinformatics. 2014 Sep 8;47:5.6.1-32. doi: 10.1002/0471250953.bi0506s47.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验