From the Department of Microbiology, The Ohio State University, Columbus, Ohio 43210 and.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138.
J Biol Chem. 2019 Jan 18;294(3):981-990. doi: 10.1074/jbc.RA118.006099. Epub 2018 Nov 27.
The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be targeted by antibiotics such as the β-lactams. Lipid II, the lipid-linked precursor for PG biogenesis, is synthesized in the inner leaflet of the cytoplasmic membrane and then translocated across the bilayer, where it is ultimately polymerized into PG. In , MurJ, a member of the MOP exporter superfamily, has been recently shown to have lipid II flippase activity that depends on membrane potential. Because of its essentiality, MurJ could potentially be targeted by much needed novel antibiotics. Recent structural information suggests that a central cavity in MurJ alternates between inward- and outward-open conformations to flip lipid II, but how these conformational changes occur are unknown. Here, we utilized structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe the conformational changes of MurJ in cells. We found that paired cysteine substitutions in transmembrane domains 2 and 8 and periplasmic loops of MurJ could be cross-linked with homobifunctional cysteine cross-linkers, indicating that MurJ can adopt both inward- and outward-facing conformations Furthermore, we show that dissipating the membrane potential with an ionophore decreases the prevalence of the inward-facing, but not the outward-facing state. Our study provides evidence that MurJ uses an alternating-access mechanism during the lipid II transport cycle.
肽聚糖(PG)细胞壁是一种重要的细胞外糖肽聚合物,可保护细菌免受渗透裂解,并决定细胞形态。细菌在细胞分裂和伸长过程中使用多蛋白机器合成 PG 细胞壁,抗生素如β-内酰胺类可以靶向这些机器。脂质 II 是 PG 生物合成的脂质连接前体,在内质网膜的内层合成,然后穿过双层被转运,最终在那里聚合为 PG。在,MurJ 是 MOP 外排超级家族的成员,最近被证明具有依赖膜电位的脂质 II 翻转酶活性。由于其重要性,MurJ 可能成为急需的新型抗生素的靶点。最近的结构信息表明,MurJ 中的中央腔在翻转脂质 II 时会在内向和外向开放构象之间交替,但这些构象变化是如何发生的尚不清楚。在这里,我们利用结构引导的半胱氨酸交联和蛋白水解偶联凝胶分析来探测 MurJ 在 细胞中的构象变化。我们发现 MurJ 的跨膜域 2 和 8 以及周质环中的成对半胱氨酸取代可以与同双功能半胱氨酸交联剂交联,这表明 MurJ 可以采用内向和外向两种构象。此外,我们表明,用离子载体耗散膜电位会降低内向构象的普遍性,但不会降低外向构象的普遍性。我们的研究提供了证据表明,MurJ 在脂质 II 转运循环中使用交替访问机制。