Suppr超能文献

预测待发表的科学手稿的未来引用计数:移植学中的队列研究。

Predicting future citation counts of scientific manuscripts submitted for publication: a cohort study in transplantology.

机构信息

Department of Basic Psychological Research and Research Methods, School of Psychology, University of Vienna, Vienna, Austria.

Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria.

出版信息

Transpl Int. 2019 Jan;32(1):6-15. doi: 10.1111/tri.13292. Epub 2018 Jul 22.

Abstract

Citations are widely used for measuring scientific impact. The goal of the present study was to predict citation counts of manuscripts submitted to Transplant International (TI) in the two calendar years following publication. We considered a comprehensive set of 21 manuscript, author, and peer-review-related predictor variables available early in the peer-review process. We also evaluated how successfully the peer-review process at TI identified and accepted the most promising manuscripts for publication. A developed predictive model with nine selected variables showed acceptable test performance to identify often cited articles (AUROC = 0.685). Particularly important predictors were the number of pages, month of publication, publication type (review versus other), and study on humans (yes versus no). Accepted manuscripts at TI were cited more often than rejected but elsewhere published manuscripts (median 4 vs. 2 citations). The predictive model did not outperform the actual editorial decision. Both findings suggest that the peer-review process at TI, in its current form, was successful in selecting submitted manuscripts with a high scientific impact in the future. Predictive models might have the potential to support the review process when decisions are made under great uncertainty.

摘要

引文被广泛用于衡量科学影响力。本研究的目的是预测在出版后的两个日历年内提交给《移植国际》(TI)的手稿的引用次数。我们考虑了一套全面的 21 个手稿、作者和同行评审相关的预测变量,这些变量在同行评审过程早期可用。我们还评估了 TI 的同行评审过程在识别和接受最有前途的出版手稿方面的表现如何。具有九个选定变量的开发预测模型显示出识别常被引用文章的可接受测试性能(AUROC=0.685)。特别重要的预测因素是页数、出版月份、出版类型(综述与其他)以及人体研究(是与否)。在 TI 上接受的手稿比被拒绝但在其他地方发表的手稿被引用的频率更高(中位数 4 次与 2 次引用)。预测模型并未优于实际的编辑决策。这两个发现都表明,TI 的同行评审过程在目前的形式下,成功地选择了未来具有高科学影响力的提交手稿。预测模型在决策存在较大不确定性时可能有潜力支持评审过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6058/7379680/58a11a7f7d86/TRI-32-6-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验