Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine.
Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine.
J Colloid Interface Sci. 2018 Nov 1;529:273-282. doi: 10.1016/j.jcis.2018.06.019. Epub 2018 Jun 8.
Three polydimethylsiloxanes (PDMS200, PDMS1000, and PDMS12500 with numbers showing the viscosity values dependent on the molecular weight) were used for adsorption (14-95 wt% PDMS) onto unmodified and PDMS-modified (16.7 wt% PDMS using dimethyl carbonate (DMC) as a siloxane bond breaking reagent) nanosilica A-300. The materials were studied using microscopy, infrared spectroscopy, thermodesorption, calorimetry, ethanol and water/ethanol evaporation, nitrogen adsorption-desorption, and quantum chemical methods. The interfacial and temperature behaviors of a PDMS layer at a silica surface depend strongly on the type of bonding to silica particles, molecular weight and content of PDMS. Upon chemical bonding, shorter PDMS200 forms a denser coverage of the silica surface since S diminution is larger and residual free silanols are practically absent (the degree of free silanol substitution Θ > 0.95) in contrast to the reactions with PDMS1000/DMC or PDMS12500/DMC providing Θ = 0.60-0.63 at larger S values. Upon thermal decomposition of the PDMS layer, oxidation/depolymerization desorption gives a greater contribution than pure depolymerization destruction. An increase in the PDMS adsorption layer thickness leads to enhancement of the depolymerization contribution because the oxidation mainly occurs at the top of the layer, but the depolymerization can occur in the total PDMS layer. The adsorption, desorption, and evaporation processes of low-molecular weight probes at a surface of PDMS-modified nanosilica depend strongly on the type of bonding and content of PDMS. Thus, the most effective hydrophobization of nanosilica by PDMS/DMC could be carried out using the shortest polymer giving the shortest PDMS fragments upon the interaction with DMC that is of interest from a practical point of view.
三种聚二甲基硅氧烷(PDMS200、PDMS1000 和 PDMS12500,数字表示分子量依赖性的粘度值)被用于未改性和 PDMS 改性(使用碳酸二甲酯(DMC)作为硅氧烷键断裂试剂,添加 16.7wt% PDMS)纳米二氧化硅 A-300 的吸附(14-95wt% PDMS)。使用显微镜、红外光谱、热解吸、量热法、乙醇和水/乙醇蒸发、氮气吸附-解吸以及量子化学方法对材料进行了研究。PDMS 层在二氧化硅表面的界面和温度行为强烈依赖于与二氧化硅颗粒的键合类型、分子量和 PDMS 含量。在化学键合的情况下,较短的 PDMS200 形成更致密的二氧化硅表面覆盖,因为 S 减少更大,并且实际上不存在残留的游离硅醇(游离硅醇取代度 Θ>0.95),与 PDMS1000/DMC 或 PDMS12500/DMC 的反应相比,在较大的 S 值下提供 Θ=0.60-0.63。在 PDMS 层的热分解过程中,氧化/解聚解吸比纯解聚破坏贡献更大。PDMS 吸附层厚度的增加导致解聚贡献的增强,因为氧化主要发生在层的顶部,但解聚可以发生在整个 PDMS 层中。低分子量探针在 PDMS 改性纳米二氧化硅表面的吸附、解吸和蒸发过程强烈依赖于键合类型和 PDMS 的含量。因此,从实际角度来看,最有效的 PDMS/DMC 纳米二氧化硅疏水化可以使用与 DMC 相互作用时产生最短 PDMS 片段的最短聚合物进行。