Dept. of Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser Str. 4, 06120, Halle (Saale), Germany; Centre for Coastal Biogeochemistry, School of Environment, Science & Engineering, Southern Cross University, Military Rd, Lismore, 2480, NSW, Australia.
Dept. of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
Water Res. 2018 Oct 1;142:373-382. doi: 10.1016/j.watres.2018.06.005. Epub 2018 Jun 13.
Nitrogen fate and transport through contaminated groundwater systems, where N is both ubiquitous and commonly limits pollutant attenuation, must be re-evaluated given evidence for new potential microbial N pathways. We addressed this by measuring the isotopic composition of dissolved inorganic N (DIN = NH, NO, and NO) and N functional gene abundances (amoA, nirK, nirS, hszA) from 20 to 38 wells across an NH, hydrocarbon, and SO contaminated aquifer. In-situ N attenuation was confirmed on three sampling dates (0, +6, +12 months) by the decreased [DIN] (4300 - 40 μM) and increased δN-DIN (5‰-33‰) over the flow path. However, the assumption of negligible N attenuation within the plume was complicated by the presence of alternative electron acceptors (SO, Fe), both oxidizing and reducing functional genes, and N oxides within this anoxic zone. Active plume N cycling was corroborated using an NO dual isotope based model, which found the fastest (∼10 day) NO turnover within the N and electron donor rich central plume. Findings suggest that N cycling is not always O limited within chemically complex contaminated aquifers, though this cycling may recycle the N species rather than attenuate N.
考虑到新的潜在微生物氮途径的证据,必须重新评估氮在受污染地下水中的命运和迁移,因为氮在这些系统中无处不在且通常限制污染物的衰减。我们通过测量 NH、碳氢化合物和 SO 污染含水层 20 到 38 口井中溶解无机氮 (DIN=NH、NO 和 NO) 的同位素组成和 N 功能基因丰度 (amoA、nirK、nirS、hszA) 来解决这个问题。在三个采样日期 (0、+6 和 +12 个月) 通过沿水流路径减少 [DIN] (4300-40 μM) 和增加 δN-DIN (5‰-33‰) 来证实原位 N 衰减。然而,由于存在替代电子受体 (SO、Fe)、氧化和还原功能基因以及缺氧区中的 N 氧化物,假设羽流内不存在可忽略不计的 N 衰减变得复杂。使用基于 NO 双同位素的模型证实了活跃的羽流 N 循环,该模型发现 N 和电子供体丰富的中心羽流中 NO 的周转最快(约 10 天)。研究结果表明,在化学复杂的受污染含水层中,N 循环并不总是受到 O 的限制,尽管这种循环可能会使 N 物种循环而不是衰减 N。