Yoo Kimoon, Walker Wesley R, Williams Ross, Tremblay-Darveau Charles, Burns Peter N, Sheeran Paul S
Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Ultrasound Med Biol. 2018 Aug;44(8):1836-1852. doi: 10.1016/j.ultrasmedbio.2018.04.015. Epub 2018 Jun 19.
Phase-shift droplets can be converted by sound from low-echogenicity, liquid-core agents into highly echogenic microbubbles. Many proposed applications in imaging and therapy take advantage of the high spatiotemporal control over this dynamic transition. Although some studies have reported increased circulation time of the droplets compared with microbubbles, few have directly explored the impact of encapsulation on droplet performance. With the goal of developing nanoscale droplets with increased circulatory persistence, we first evaluate the half-life of several candidate phospholipid encapsulations in vitro at clinical frequencies. To evaluate in vivo circulatory persistence, we develop a technique to periodically measure droplet vaporization from high-frequency B-mode scans of a mouse kidney. Results show that longer acyl chain phospholipids can dramatically reduce droplet degradation, increasing median half-life in vitro to 25.6 min-a 50-fold increase over droplets formed from phospholipids commonly used for clinical microbubbles. In vivo, the best-performing droplet formulations showed a median half-life of 18.4 min, more than a 35-fold increase in circulatory half-life compared with microbubbles with the same encapsulation in vivo. These findings also point to possible refinements that may improve nanoscale phase-shift droplet performance beyond those measured here.
相移液滴可以通过声音从低回声的液芯剂转变为高回声的微泡。在成像和治疗领域的许多应用都利用了对这种动态转变的高度时空控制。尽管一些研究报告称与微泡相比,液滴的循环时间有所增加,但很少有研究直接探讨包封对液滴性能的影响。为了开发具有更长循环持久性的纳米级液滴,我们首先在临床频率下体外评估了几种候选磷脂包封的半衰期。为了评估体内循环持久性,我们开发了一种技术,通过对小鼠肾脏进行高频B模式扫描来定期测量液滴的汽化情况。结果表明,较长酰基链的磷脂可以显著减少液滴降解,使体外中位半衰期增加到25.6分钟,比临床微泡常用磷脂形成的液滴增加了50倍。在体内,性能最佳的液滴制剂中位半衰期为18.4分钟,与体内相同包封的微泡相比,循环半衰期增加了35倍以上。这些发现还指出了可能的改进方向,有望进一步提升纳米级相移液滴的性能,超越本文所测结果。