Suppr超能文献

利用拉曼光谱识别微塑料:最新进展和未来展望。

Identification of microplastics using Raman spectroscopy: Latest developments and future prospects.

机构信息

CICECO - Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.

CICECO - Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.

出版信息

Water Res. 2018 Oct 1;142:426-440. doi: 10.1016/j.watres.2018.05.060. Epub 2018 Jun 6.

Abstract

Widespread microplastic pollution is raising growing concerns as to its detrimental effects upon living organisms. A realistic risk assessment must stand on representative data on the abundance, size distribution and chemical composition of microplastics. Raman microscopy is an indispensable tool for the analysis of very small microplastics (<20 μm). Still, its use is far from widespread, in part due to drawbacks such as long measurement time and proneness to spectral distortion induced by fluorescence. This review discusses each drawback followed by a showcase of interesting and easily available solutions that contribute to faster and better identification of microplastics using Raman spectroscopy. Among discussed topics are: enhanced signal quality with better detectors and spectrum processing; automated particle selection for faster Raman mapping; comprehensive reference libraries for successful spectral matching. A last section introduces non-conventional Raman techniques (non-linear Raman, hyperspectral imaging, standoff Raman) which permit more advanced applications such as real-time Raman detection and imaging of microplastics.

摘要

微塑料污染广泛存在,其对生物体的有害影响引起了越来越多的关注。现实的风险评估必须基于关于微塑料丰度、大小分布和化学成分的有代表性的数据。拉曼显微镜是分析非常小的微塑料(<20μm)的不可或缺的工具。尽管如此,它的使用还远未普及,部分原因是存在一些缺点,例如测量时间长,容易受到荧光引起的光谱失真的影响。本文综述了每个缺点,随后展示了一些有趣且易于获得的解决方案,这些解决方案有助于使用拉曼光谱更快、更好地识别微塑料。讨论的主题包括:使用更好的探测器和光谱处理来提高信号质量;通过自动化的粒子选择实现更快的拉曼映射;综合的参考库用于成功的光谱匹配。最后一部分介绍了非传统的拉曼技术(非线性拉曼、高光谱成像、拉曼遥测),这些技术允许更先进的应用,如实时拉曼检测和微塑料成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验