Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan.
Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuoku, Osaka, 541-8567, Japan.
Glycoconj J. 2018 Aug;35(4):345-351. doi: 10.1007/s10719-018-9829-4. Epub 2018 Jun 16.
Bisecting GlcNAc, a branch structure in N-glycan, has unique functions and is involved in several diseases including Alzheimer's disease (AD). In this review, we provide an overview of the biosynthesis of bisecting GlcNAc and its physiological and pathological functions, particularly in the nervous system where bisecting GlcNAc is most highly expressed. The biosynthetic enzyme of bisecting GlcNAc is N-acetylglucosaminyltransferase-III (GnT-III). Overexpression, knockdown, and knockout of GnT-III have so far revealed various functions of bisecting GlcNAc, which are mediated by regulating the functions of key carrier proteins. GnT-III-deficient AD model mice showed reduced amyloid-β (Aβ) accumulation in the brain by suppressing the function of a key Aβ-generating enzyme, β-site APP-cleaving enzyme-1 (BACE1), and greatly improved AD pathology. Altered BACE1 subcellular localization in GnT-III-deficient cells, from early endosomes to lysosomes, suggests that bisecting GlcNAc serves as a trafficking tag for the movement of modified proteins to an endosomal compartment. For therapeutic application, we have employed high-throughput screening to search for GnT-III inhibitors. These findings highlight the importance of bisecting GlcNAc modification in the nervous system.
双分支 GlcNAc 是 N-糖链中的一种分支结构,具有独特的功能,并与包括阿尔茨海默病(AD)在内的多种疾病有关。在这篇综述中,我们概述了双分支 GlcNAc 的生物合成及其生理和病理功能,特别是在神经系统中,双分支 GlcNAc 的表达水平最高。双分支 GlcNAc 的生物合成酶是 N-乙酰氨基葡萄糖基转移酶-III(GnT-III)。迄今为止,GnT-III 的过表达、敲低和敲除揭示了双分支 GlcNAc 的各种功能,这些功能是通过调节关键载体蛋白的功能来介导的。GnT-III 缺陷型 AD 模型小鼠通过抑制关键 Aβ 生成酶β-位 APP 裂解酶-1(BACE1)的功能,减少了大脑中的淀粉样蛋白-β(Aβ)积累,大大改善了 AD 病理。GnT-III 缺陷型细胞中 BACE1 的亚细胞定位从早期内体到溶酶体的改变表明,双分支 GlcNAc 作为修饰蛋白向核内体区室运动的运输标签。为了进行治疗应用,我们采用了高通量筛选来寻找 GnT-III 抑制剂。这些发现强调了双分支 GlcNAc 修饰在神经系统中的重要性。