Suppr超能文献

基于压缩感知的 Markov 三肽蛋白质特征提取方法。

Feature extraction method for proteins based on Markov tripeptide by compressive sensing.

机构信息

School of Science, Jiangnan University, Wuxi, 214122, China.

Wuxi Engineering Research Center for Biocomputing, Wuxi, 214122, China.

出版信息

BMC Bioinformatics. 2018 Jun 18;19(1):229. doi: 10.1186/s12859-018-2235-x.

Abstract

BACKGROUND

In order to capture the vital structural information of the original protein, the symbol sequence was transformed into the Markov frequency matrix according to the consecutive three residues throughout the chain. A three-dimensional sparse matrix sized 20 × 20 × 20 was obtained and expanded to one-dimensional vector. Then, an appropriate measurement matrix was selected for the vector to obtain a compressed feature set by random projection. Consequently, the new compressive sensing feature extraction technology was proposed.

RESULTS

Several indexes were analyzed on the cell membrane, cytoplasm, and nucleus dataset to detect the discrimination of the features. In comparison with the traditional methods of scale wavelet energy and amino acid components, the experimental results suggested the advantage and accuracy of the features by this new method.

CONCLUSIONS

The new features extracted from this model could preserve the maximum information contained in the sequence and reflect the essential properties of the protein. Thus, it is an adequate and potential method in collecting and processing the protein sequence from a large sample size and high dimension.

摘要

背景

为了获取原始蛋白质的重要结构信息,根据链上连续的三个残基将符号序列转换为马尔可夫频率矩阵。得到一个大小为 20×20×20 的三维稀疏矩阵,并将其扩展为一维向量。然后,选择适当的测量矩阵对向量进行随机投影,从而得到压缩的特征集。由此提出了新的压缩感知特征提取技术。

结果

在细胞膜、细胞质和细胞核数据集上分析了多个指标,以检测特征的区分能力。与传统的尺度小波能量和氨基酸成分方法相比,实验结果表明了该新方法的优势和特征的准确性。

结论

从该模型中提取的新特征可以保留序列中包含的最大信息量,并反映蛋白质的基本特性。因此,在从大量样本和高维中收集和处理蛋白质序列时,它是一种充分且有潜力的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a11f/6006778/a0eb0f5f3440/12859_2018_2235_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验