Suppr超能文献

激光辐照固体表面产生超高荷电电子束。

Ultrahigh-charge electron beams from laser-irradiated solid surface.

机构信息

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Department of Physics, Lancaster University, Bailrigg LA1 4YW, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2018 Jul 3;115(27):6980-6985. doi: 10.1073/pnas.1800668115. Epub 2018 Jun 18.

Abstract

Compact acceleration of a tightly collimated relativistic electron beam with high charge from a laser-plasma interaction has many unique applications. However, currently the well-known schemes, including laser wakefield acceleration from gases and vacuum laser acceleration from solids, often produce electron beams either with low charge or with large divergence angles. In this work, we report the generation of highly collimated electron beams with a divergence angle of a few degrees, nonthermal spectra peaked at the megaelectronvolt level, and extremely high charge (∼100 nC) via a powerful subpicosecond laser pulse interacting with a solid target in grazing incidence. Particle-in-cell simulations illustrate a direct laser acceleration scenario, in which the self-filamentation is triggered in a large-scale near-critical-density plasma and electron bunches are accelerated periodically and collimated by the ultraintense electromagnetic field. The energy density of such electron beams in high-Z materials reaches to [Formula: see text], making it a promising tool to drive warm or even hot dense matter states.

摘要

紧凑的相对论电子束的加速与高电荷从激光 - 等离子体相互作用具有许多独特的应用。然而,目前著名的方案,包括气体中的激光尾流加速和固体中的真空激光加速,通常产生电子束要么电荷低,要么发散角大。在这项工作中,我们报告了通过强亚皮秒激光脉冲以掠入射与固体靶相互作用,产生具有几度发散角、非热谱在兆电子伏特级峰值和极高电荷(约 100 nC)的高度准直电子束。粒子在细胞模拟说明了一种直接的激光加速方案,其中自细丝化在大尺度近临界密度等离子体中触发,电子束在超强度电磁场中周期性地加速并准直。这种电子束在高 Z 材料中的能量密度达到[公式:见文本],使其成为驱动温暖甚至热致密物质状态的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f85/6142259/d6e36630daac/pnas.1800668115fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验