Suppr超能文献

食入抗寄生虫次级代谢产物能否解释野生凤头鹦鹉科鸟类血液寄生虫低流行率?

Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?

机构信息

Department of Animal Ecology and Systematics, Justus-Liebig Universität Gießen, Heinrich-Buff-Ring 26, D-35392, Gießen, Germany.

Departamento de Biomedicina y Biotecnologıía, Area Parasitologıía, Facultad de Farmacia, Universidad de Alcalá (UAH), NII Km 33.600, 28805 Alcalá de Henares, Madrid, Spain.

出版信息

Parasit Vectors. 2018 Jun 19;11(1):357. doi: 10.1186/s13071-018-2940-3.

Abstract

BACKGROUND

Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load.

RESULTS

We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests.

CONCLUSIONS

The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates.

摘要

背景

寄生虫可以通过对生存、繁殖成功、性选择装饰物的影响,对宿主施加选择压力,这具有重要的生态和进化后果,例如种群生存力的变化。因此,血液寄生虫已成为最近鸟类研究的焦点。感染在不同类群中差异很大。各种因素可能解释了不同类群之间的感染差异,包括栖息地、气候、宿主密度、媒介的存在、生活史和免疫防御。摄食行为也可能很重要,因为它既可以增加与媒介的接触,也可以消耗具有预防或治疗作用的次生代谢物,从而降低寄生虫负荷。然而,后者很少被研究。鹦鹉目(鹦鹉和凤头鹦鹉)是研究这些课题的一个很好的模型,因为它们已知会利用生物防治来对抗外寄生虫,并以有毒食物为食。我们调查了来自印度-马来亚、澳大拉西亚和新热带地区的各种栖息地的 19 种鹦鹉目中的鸟类疟疾寄生虫(疟原虫)、细胞内血孢子虫(疟原虫、白细胞虫)、单细胞鞭毛虫原生动物(锥虫)和微丝蚴的存在情况。我们从文献中收集了野生鹦鹉目中血液寄生虫的额外数据。我们考虑了可能控制鹦鹉目中血液寄生虫存在的因素,收集了关于饮食、栖息地和气候的信息。此外,我们还研究了饮食在提供驱虫次生代谢物方面的作用,这些代谢物可用作自我治疗以降低寄生虫负荷。

结果

我们仅在 19 种采样物种中的两种中发现了血液寄生虫。在这两种中,所有食用至少一种已知具有抗疟、杀锥虫或一般驱虫特性的次生代谢物的食物的物种都没有血液寄生虫。相比之下,受感染的鹦鹉不吃具有抗疟甚至一般驱虫特性的食物。我们发现,本研究中受感染的两种物种都食用杂食性食物。当我们将我们的数据与以前调查野生鹦鹉血液寄生虫的研究的数据结合起来时,杂食性饮食与血液寄生虫感染之间的正相关关系得到了证实。来自开阔栖息地的个体比来自森林的个体感染程度低。

结论

食用已知具有抗疟、杀锥虫或一般驱虫特性的次生代谢物的食物,以及杂食性鹦鹉中感染物种的比例较高,可能解释了许多脊椎动物报告的血液寄生虫低流行率。

相似文献

3
Haemoproteus minutus is highly virulent for Australasian and South American parrots.
Parasit Vectors. 2019 Jan 17;12(1):40. doi: 10.1186/s13071-018-3255-0.
4
Factors affecting the distribution of haemosporidian parasites within an oceanic island.
Int J Parasitol. 2017 Mar;47(4):225-235. doi: 10.1016/j.ijpara.2016.11.008. Epub 2017 Feb 2.
5
Nest ecology of blood parasites in the European roller and its ectoparasitic carnid fly.
Exp Parasitol. 2016 Jun;165:71-80. doi: 10.1016/j.exppara.2016.03.014. Epub 2016 Mar 16.
6
[Hemoparasites in wild birds in Madagascar].
Arch Inst Pasteur Madagascar. 2002;68(1-2):90-9.
7
Blood parasites in northern goshawk (Accipiter gentilis) with an emphasis to Leucocytozoon toddi.
Parasitol Res. 2016 Jan;115(1):263-70. doi: 10.1007/s00436-015-4743-1. Epub 2015 Sep 14.
10
Mining increases the prevalence of avian haemosporidian parasites in Northeast Amazonia.
Parasitol Res. 2021 Feb;120(2):605-613. doi: 10.1007/s00436-020-06986-9. Epub 2021 Jan 8.

引用本文的文献

1
Hemoparasites in Wild Birds: A Systematic Review of Their Ecology and Clinical Implications.
Animals (Basel). 2025 Sep 1;15(17):2570. doi: 10.3390/ani15172570.
4
Epidemiology of protozoan and helminthic parasites in wild passerine birds of Britain and Ireland.
Parasitology. 2023 Mar;150(3):297-310. doi: 10.1017/S0031182022001779. Epub 2023 Jan 4.
5
Antiparasitic Effects of Potentially Toxic Beetles (Tenebrionidae and Meloidae) from Steppe Zones.
Toxins (Basel). 2021 Jul 14;13(7):489. doi: 10.3390/toxins13070489.
6
Causing Avian Malaria in Lovebirds () Hosted in an Italian Zoo.
Microorganisms. 2021 Jun 23;9(7):1356. doi: 10.3390/microorganisms9071356.
8
Haemoproteus minutus is highly virulent for Australasian and South American parrots.
Parasit Vectors. 2019 Jan 17;12(1):40. doi: 10.1186/s13071-018-3255-0.
9
Ectoparasite sharing among native and invasive birds in a metropolitan area.
Parasitol Res. 2019 Feb;118(2):399-409. doi: 10.1007/s00436-018-6174-2. Epub 2018 Dec 18.

本文引用的文献

1
Modes of Action of Herbal Medicines and Plant Secondary Metabolites.
Medicines (Basel). 2015 Sep 8;2(3):251-286. doi: 10.3390/medicines2030251.
2
New Haemoproteus parasite of parrots, with remarks on the virulence of haemoproteids in naive avian hosts.
Acta Trop. 2017 Dec;176:256-262. doi: 10.1016/j.actatropica.2017.08.004. Epub 2017 Aug 4.
4
Biting midges (Ceratopogonidae) as vectors of avian trypanosomes.
Parasit Vectors. 2017 May 8;10(1):224. doi: 10.1186/s13071-017-2158-9.
6
Evidence for the exchange of blood parasites between North America and the Neotropics in blue-winged teal (Anas discors).
Parasitol Res. 2016 Oct;115(10):3923-39. doi: 10.1007/s00436-016-5159-2. Epub 2016 Jun 10.
7
Manifold habitat effects on the prevalence and diversity of avian blood parasites.
Int J Parasitol Parasites Wildl. 2015 Sep 11;4(3):421-30. doi: 10.1016/j.ijppaw.2015.09.001. eCollection 2015 Dec.
8
Specialist enemies, generalist weapons and the potential spread of exotic pathogens: malaria parasites in a highly invasive bird.
Int J Parasitol. 2015 Dec;45(14):891-9. doi: 10.1016/j.ijpara.2015.08.008. Epub 2015 Oct 1.
9
Discovering potential sources of emerging pathogens: South America is a reservoir of generalist avian blood parasites.
Int J Parasitol. 2016 Jan;46(1):41-9. doi: 10.1016/j.ijpara.2015.08.001. Epub 2015 Sep 6.
10
Parasitological survey on birds at some selected brazilian zoos.
Rev Bras Parasitol Vet. 2015 Jan-Mar;24(1):87-91. doi: 10.1590/S1984-29612015005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验