Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092, Sevilla, Spain.
Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9041, USA.
Mol Microbiol. 2018 Sep;109(6):763-780. doi: 10.1111/mmi.14006. Epub 2018 Oct 4.
Polyamines are primordial, small organic polycations present in almost all cells, but their roles in bacteria are poorly understood. sym-Homospermidine is the dominant polyamine in the filamentous, N -fixing, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Synthesis of homospermidine was dependent on speA (encoding arginine decarboxylase), speB (agmatinase) and speY (deoxyhypusine synthase homologue), which in bacteria is an unprecedented pathway. Inactivation of any of these genes impaired diazotrophic growth. Heterocyst differentiation in the speA mutant was blocked at an early step, after induction of the regulatory gene hetR but before production of heterocyst-specific glycolipids (HGL). In contrast, the speY mutant produced HGL and showed slow diazotrophic growth. Analysis of fusions to green fluorescent protein revealed that SpeA (like SpeB previously described) accumulates at higher levels in vegetative cells than in heterocysts, and that SpeY accumulates in vegetative cells but also at significant levels in heterocysts. The homospermidine biosynthetic pathway is therefore active primarily in vegetative cells but the last step can be completed in heterocysts. Our findings indicate an important role for polyamines in the diazotrophic biology of Anabaena. Furthermore, inactivation of a gene cluster (potADB) encoding a polyamine ABC transporter disrupted diazotrophic growth, corroborating the importance of polyamine homeostasis in Anabaena.
多胺是普遍存在于几乎所有细胞中的原始小分子多阳离子,但它们在细菌中的作用知之甚少。sym-腐胺是丝状固氮异形胞形成蓝藻鱼腥藻 PCC 7120 中的主要多胺。腐胺的合成依赖于 speA(编码精氨酸脱羧酶)、speB(胍氨酸酶)和 speY(脱羟鸟氨酸合酶同源物),这在细菌中是一条前所未有的途径。这些基因中的任何一个失活都会损害固氮生长。speA 突变体中的异形胞分化在 hetR 调控基因诱导后但在产生异形胞特异性糖脂 (HGL) 之前的早期步骤被阻断。相比之下,speY 突变体产生了 HGL 并表现出缓慢的固氮生长。与绿色荧光蛋白融合的分析表明,SpeA(如之前描述的 SpeB)在营养细胞中的积累水平高于异形胞,而 SpeY 在营养细胞中积累,在异形胞中也有显著水平的积累。因此,腐胺生物合成途径主要在营养细胞中活跃,但最后一步可以在异形胞中完成。我们的发现表明多胺在鱼腥藻的固氮生物学中起着重要作用。此外,多胺 ABC 转运蛋白基因簇(potADB)的失活破坏了固氮生长,这证实了多胺动态平衡在鱼腥藻中的重要性。