Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045.
Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045.
J Biol Chem. 2018 Aug 17;293(33):12681-12689. doi: 10.1074/jbc.RA118.002713. Epub 2018 Jun 20.
Mitochondrial accumulation of intracellular β-amyloid (Aβ) peptides is present in the brains of individuals with Alzheimer's disease (AD) as well as in related mouse models of AD. This accumulation is extremely toxic because Aβ disrupts the normal functions of many mitochondrial proteins, resulting in significant mitochondrial dysfunction. Therefore, understanding the mitochondrial accumulation of Aβ is useful for future pharmaceutical design of drugs to address mitochondrial dysfunction in AD. However, the detailed molecular mechanism of this accumulation process remains elusive. Here, using yeast mitochondria, we present direct experimental evidence suggesting that Aβ is specifically recognized by translocase of outer mitochondrial membrane subunit 22 (Tom22 in yeast; TOMM22 in human), a noncanonical receptor within the mitochondrial protein import machinery, and that this recognition is critical for Aβ accumulation in mitochondria. Furthermore, we found that residues 25-42 in the Aβ peptide mediate the specific interaction with TOMM22. On the basis of our findings, we propose that cytosolic Aβ is recognized by TOMM22; transferred to another translocase subunit, TOMM40; and transported through the TOMM channel into the mitochondria. Our results not only confirm that yeast mitochondria can be used as a model to study mitochondrial dysfunction caused by Aβ peptides in AD but also pave the way for future studies of the molecular mechanism of mitochondrial Aβ accumulation.
细胞内β-淀粉样蛋白 (Aβ) 肽在阿尔茨海默病 (AD) 患者以及相关的 AD 小鼠模型的大脑中积累。这种积累是极其有毒的,因为 Aβ 会破坏许多线粒体蛋白的正常功能,导致显著的线粒体功能障碍。因此,了解 Aβ 的线粒体积累对于未来药物设计以解决 AD 中的线粒体功能障碍非常有用。然而,这个积累过程的详细分子机制仍然难以捉摸。在这里,我们使用酵母线粒体,提供了直接的实验证据,表明 Aβ 被线粒体蛋白输入机制中的非典型受体——外膜转位酶亚基 22(酵母中的 Tom22;人类中的 TOMM22)特异性识别,并且这种识别对于 Aβ 在线粒体中的积累是至关重要的。此外,我们发现 Aβ 肽中的 25-42 残基介导与 Tom22 的特异性相互作用。基于我们的发现,我们提出细胞质中的 Aβ 被 Tom22 识别;转移到另一个转位酶亚基 Tomm40;并通过 Tomm 通道运进线粒体。我们的研究结果不仅证实了酵母线粒体可以作为研究 AD 中 Aβ 肽引起的线粒体功能障碍的模型,而且为未来研究线粒体 Aβ 积累的分子机制铺平了道路。